summaryrefslogtreecommitdiff
path: root/1040/CH5/EX5.3/Chapter5_Ex3.sce
blob: 8e94e72a7e50535fda0da7e89f388512256e8117 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436.
//Chapter-5 Ex5.3 Pg No. 209
//Title:Overall heat transfer coefficients and radial average bed temperature for packed bed reactor
//=============================================================================================================
clear
clc

// COMMON INPUT
k_s= 8*10^(-4);//(cal/sec cm°C)
M_air_avg=29.24;// Average Molecular weight of air
Cp_air_mol=7.91;// cal/mol°C;
Cp_air_g=Cp_air_mol/M_air_avg;//cal/g°C
dp=0.4;//Size of the catalyst pellet (cm)
D=3.8;//Diameter of tube (cm)
R_pellet=D/2;//Radius
f_EO=0.7;//Fraction  of ethylene forming ethylene oxide 
f_CO2_H2O=1-f_EO;//Fraction  of ethylene forming CO2 and H2O
rho_p=2.5;//Density of catalyst particle (g/cm3)
V_ref=22400;//Reference volume(cm3)
T_ref=273;// Reference Temperature (K)
P_ref=1;//Reference  Pressure (atm)
P=5;//System Pressure (atm)
T_C=230;//System Temperature (°C)
T=T_C+273;//System Temperature (K)
u_ft=[1.5 3];//Velocity (ft/s)
myu=0.026*(10^(-2));//Viscosity of air (Poise)
M_wt=[28 32 44 28];//Molecular weight
M_fraction=[0.04 0.07 0.06 0.83];
Cp=[15.3 7.4 10.7 7.4];//(cal/mol°C)
k_g=9.27*10^(-5);//(cal/sec cm°C)
del_H_rxn=[-29.9 -317];//(kcal/mol)
E=18*1000;//Activation Energy (cal)
R=1.987;//Gas Constant (cal/K.mol)

//CALCULATION (Ex5.3.a)
rho=M_air_avg*P*T_ref/(V_ref*P_ref*T);
u=30.533.*u_ft;//Velocity in (cm/s)
Re_p=(rho*dp/myu).*u;
Pr=Cp_air_g*myu/k_g;
ks_by_kg=k_s/k_g;
k0e_by_kg=3.5;//From figure 5.16 Pg. No. 203
kr_by_kg=2.5;//From equation 5.68 and 5.69  Pg. No. 204
for i=1:2
    ktd_by_k_air(i)=(0.1*Pr)*Re_p(i);
ke_by_kg(i)=(k0e_by_kg+kr_by_kg)+ktd_by_k_air(i);
k_e(i)=ke_by_kg(i)*k_g;
h_bed(i)=4*k_e(i)/R_pellet;
Nu_w(i)=(1.94*Pr^(0.33))*Re_p(i)^(0.5);//Refer equation 5.83  Pg. No. 208
h_w(i)=(k_g/dp)*Nu_w(i);//(cal/sec cm2 K)
h_j=100*10^(-3);//Assumed
      U(i)=1/((1/h_j)+(1/h_w(i))+(1/h_bed(i)));
end

//CALCULATION (Ex5.3.b)
minus_delH=f_EO*(-del_H_rxn(1))+f_CO2_H2O*(-del_H_rxn(2));
T_max=T+20;
del_Tc= R*(T_max)^2/E;
T_new=250 +273;
X_E=0.1;
k250_by_k230=exp((E/R)*((1/T)-(1/T_new)));
P_E=P*(1-X_E)*M_fraction(1);
P_O2=P*(1-f_EO*X_E)*M_fraction(2);
P_CO2=P*(1+f_CO2_H2O*X_E)*M_fraction(3);
r=k250_by_k230*((0.076*P_E*P_O2)/(1+2*P_E+15*P_CO2));
Q_dash=r*minus_delH*10^3/3600;
epsilon=0.4;
rho_bed=rho_p*(1-0.4);
A_percm3=4/D;
Q=(Q_dash*rho_bed)
for i=1:2
    delta_T(i)=(Q/A_percm3)*(1/U(i));
end

//OUTPUT ((Ex5.3.a))
mprintf('\n OUTPUT Ex5.3.a');
mprintf('\n==========================================================')
mprintf('\nThe Overall Heat transfer coefficient for given Velocities' )
mprintf('\n==========================================================')
mprintf('\n  u(velocity)     U')
mprintf('\n  (ft/s)     (cal/cm2 sec K)')
mprintf('\n==========================================================')
for i=1:2
    mprintf('\n %0.1f     %3E',u_ft(i),U(i))
end

//OUTPUT ((Ex5.3.b)
mprintf('\n\n\n OUTPUT Ex5.3.b');
mprintf('\n==========================================================')
mprintf('\nThe Peak Radial average bed temperature for given Velocities' )
mprintf('\n==========================================================')
mprintf('\n  u(velocity)     delta_T')
mprintf('\n  (ft/s)           (°C)')
mprintf('\n==========================================================')
for i=1:2
    mprintf('\n  %0.1f \t  \t  %0.0f',u_ft(i),delta_T(i))
end

//FILE OUTPUT
fid= mopen('.\Chapter5-Ex3-Output.txt','w');
mfprintf(fid,'\n OUTPUT Ex5.3.a');
mfprintf(fid,'\n==========================================================')
mfprintf(fid,'\nThe Overall Heat transfer coefficient for given Velocities' )
mfprintf(fid,'\n==========================================================')
mfprintf(fid,'\n  u(velocity)     U')
mfprintf(fid,'\n  (ft/s)     (cal/cm2 sec K)')
mfprintf(fid,'\n==========================================================')
for i=1:2
    mfprintf(fid,'\n %0.1f     %3E',u_ft(i),U(i))
end
mfprintf(fid,'\n\n\n OUTPUT Ex5.3.b');
mfprintf(fid,'\n==========================================================')
mfprintf(fid,'\nThe Peak Radial average bed temperature for given Velocities' )
mfprintf(fid,'\n==========================================================')
mfprintf(fid,'\n  u(velocity)     delta_T')
mfprintf(fid,'\n  (ft/s)           (°C)')
mfprintf(fid,'\n==========================================================')
for i=1:2
    mfprintf(fid,'\n  %0.1f \t  \t  %0.0f',u_ft(i),delta_T(i))
end
mclose(fid);
//===============================================END OF PROGRAM=======================================================