summaryrefslogtreecommitdiff
path: root/926/CH5/EX5.6/Chapter5_Example6.sce
diff options
context:
space:
mode:
Diffstat (limited to '926/CH5/EX5.6/Chapter5_Example6.sce')
-rw-r--r--926/CH5/EX5.6/Chapter5_Example6.sce56
1 files changed, 56 insertions, 0 deletions
diff --git a/926/CH5/EX5.6/Chapter5_Example6.sce b/926/CH5/EX5.6/Chapter5_Example6.sce
new file mode 100644
index 000000000..e32eab562
--- /dev/null
+++ b/926/CH5/EX5.6/Chapter5_Example6.sce
@@ -0,0 +1,56 @@
+//Hougen O.A., Watson K.M., Ragatz R.A., 2004. Chemical process principles Part-1: Material and Energy Balances(II Edition). CBS Publishers & Distributors, New Delhi, pp 504
+
+//Chapter-5, Illustration 6, Page 118
+//Title: Calculation of different concentrations in vaporization process
+//=============================================================================
+clear
+clc
+
+//INPUT
+P = [750 760]; //Given pressure and standard pressure in mm Hg
+RH = 0.8; //Relative humidity
+PS = [17.5 9.2]; //Vapor pressure of water in mm Hg at 20 degree C and 10 degree C
+P_new = 35; //Increased pressure by condensing out some water in psi
+V = 1000; //Volume of original wet water in cu ft (basis for calculation in part (c))
+T = [20 0]; //Given temperature and standard temperature in degree C
+T_new = 10; //Reduced temperature by condensing out some water in degree C
+MW = 18; //Molecular weight of water in lb/lb-mole
+
+//CALCULATIONS
+//Part(a)
+PP1 = RH*PS(1); //initial partial pressure of water in mm Hg
+MH1 = PP1/(P(1)-PP1); //Initial molal humidity
+//Part(b)
+PP2 = PS(2); //Final partial pressure of water in mm Hg
+P_new1 = 35*(P(2)/14.7); //Final total pressure in mm Hg
+MH2 = PP2/(P_new1-PP2); //Final molal humidity
+//Part(c)
+T1 = T+273; //Given temperature and standard temperature in K
+PP3 = P(1)-PP1; //Partial pressure of dry air in mm Hg
+PV = V*(PP3/P(2))*(T1(2)/T1(1)); //partial volume of dry air at standard condition in cu ft
+n1 = PV/359; //Moles of dry air in lb-moles
+n2 = n1*MH1; //lb-mole of water originally present
+n3 = n1*MH2; //lb-mole of water finally present
+n4 = n2-n3; //lb-mole of water condensed
+w1 = n4*MW; //lb of water condensed
+//Part(d)
+T_new1 = T_new+273; //Final temperature in K
+n5 = n1+n3; //Total wet air finally present in lb-moles
+v1 = n5*359*(P(2)/P_new1)*(T_new1/T1(2)); //Final volume of wet air in cu ft
+
+//OUTPUT
+// Console output
+mprintf('\n (a) Initial molal humidity of air = %5.4f',MH1);
+mprintf('\n (b) Final molal humidity of air = %5.4f',MH2);
+mprintf('\n (c) Amount of water condensed = %4.3f lb',w1);
+mprintf('\n (d) Final volume of wet air = %3.0f cu ft',v1);
+
+// File output
+fd= mopen('.\Chapter5_Example6_Output.txt','w');
+mfprintf(fd,'\n (a) Initial molal humidity of air = %5.4f',MH1);
+mfprintf(fd,'\n (b) Final molal humidity of air = %5.4f',MH2);
+mfprintf(fd,'\n (c) Amount of water condensed = %4.3f lb',w1);
+mfprintf(fd,'\n (d) Final volume of wet air = %3.0f cu ft',v1);
+mclose(fd);
+
+//===============================END OF PROGRAM=================================