diff options
Diffstat (limited to '926/CH5/EX5.5/Chapter5_Example5.sce')
-rw-r--r-- | 926/CH5/EX5.5/Chapter5_Example5.sce | 54 |
1 files changed, 54 insertions, 0 deletions
diff --git a/926/CH5/EX5.5/Chapter5_Example5.sce b/926/CH5/EX5.5/Chapter5_Example5.sce new file mode 100644 index 000000000..29cb289c8 --- /dev/null +++ b/926/CH5/EX5.5/Chapter5_Example5.sce @@ -0,0 +1,54 @@ +//Hougen O.A., Watson K.M., Ragatz R.A., 2004. Chemical process principles Part-1: Material and Energy Balances(II Edition). CBS Publishers & Distributors, New Delhi, pp 504
+
+//Chapter-5, Illustration 5, Page 116
+//Title: Calculation of different concentrations in vaporization process
+//=============================================================================
+clear
+clc
+
+//INPUT
+P = [750 760]; //Barometric pressure and standard pressure in mm Hg
+PS = [116 185]; //Vapor pressure of acetone at 10 degree C and 20 degree C in mm Hg
+T = [30 25 0]; //Temperature of nitrogen entering evaporator and standard temperature in degree C
+n = 1; //lb mole of nitrogen (Basis of calculation in part(c),part(d) and part(e))
+MW = 58; //Molecualar weight of acetone in lb/lb mole
+
+//CALCULATIONS
+//Part(a)
+//Entering gases
+PP1 = PS(1); //Partial pressure of acetone in mm Hg
+PP2 = P(1)-PP1; //Partial pressure of nitrogen in mm Hg
+n1 = PP1/PP2; //Moles of acetone per mole of nitrogen
+//leaving gases
+PP3 = PS(2); //Partial pressure of acetone in mm Hg
+PP4 = P(1)-PS(2); //Partial pressure of nitrogen in mm Hg
+n2 = PP3/PP4; //Moles of acetone per mole of nitrogen
+//Part(b)
+n3 = n2-n1; //lb mole of acetone evaporated
+//Part(c)
+Tkelvin = T+273; //Converting temperature fron degree C to kelvin
+n4 = n+n1; //lb mole of total gas entering the process
+v1 = n4*359*(P(2)/P(1))*(Tkelvin(1)/Tkelvin(3)); //Volume of gas entering in cu ft
+m1 = MW*n3; //Weight of acetone evaporated
+m2 = m1*1000/v1; //lb of acetone evaporated per 1000 cu ft of gas entering
+//Part(d)
+n5 = n+n2; //lb mole of total gas leaving the process
+v2 = n5*359*(P(2)/P(1))*(Tkelvin(2)/Tkelvin(3)); //Volume of gas leaving in cu ft
+v3 = v2*1000/v1; //cu ft of gas leaving per 1000 cu ft of gas entering the process
+
+//OUTPUT
+// Console output
+mprintf('\n (a) Vapor concentration of gases entering and leaving = %4.3f and %4.3f respectively',n1,n2);
+mprintf('\n (b) Moles of acetone evaporated = %4.3f lb moles',n3);
+mprintf('\n (c) Weight of acetone evaporated per 1000 cu ft of gas entering = %3.1f lb',m2);
+mprintf('\n (d) Volume of gas leaving per 1000 cu ft of gas entering = %4.0f cu ft',v3);
+
+// File output
+fd= mopen('.\Chapter5_Example5_Output.txt','w');
+mfprintf(fd,'\n (a) Vapor concentration of gases entering and leaving = %4.3f and %4.3f respectively',n1,n2);
+mfprintf(fd,'\n (b) Moles of acetone evaporated = %4.3f lb moles',n3);
+mfprintf(fd,'\n (c) Weight of acetone evaporated per 1000 cu ft of gas entering = %3.1f lb',m2);
+mfprintf(fd,'\n (d) Volume of gas leaving per 1000 cu ft of gas entering = %4.0f cu ft',v3);
+mclose(fd);
+
+//===========================END OF PROGRAM====================================
|