summaryrefslogtreecommitdiff
path: root/905/CH9/EX9.1
diff options
context:
space:
mode:
Diffstat (limited to '905/CH9/EX9.1')
-rwxr-xr-x905/CH9/EX9.1/9_1.sce39
1 files changed, 39 insertions, 0 deletions
diff --git a/905/CH9/EX9.1/9_1.sce b/905/CH9/EX9.1/9_1.sce
new file mode 100755
index 000000000..0c0b1efa6
--- /dev/null
+++ b/905/CH9/EX9.1/9_1.sce
@@ -0,0 +1,39 @@
+clear;
+clc;
+
+// Illustration 9.1
+// Page: 508
+
+printf('Illustration 9.1 - Page: 508\n\n');
+
+// solution
+//*****Data*****//
+// A-solute B-solvent
+ci_f = 50; // [feed side concentration, mole/cubic m]
+ci_p = 15; // [permeate side concentration, mole/cubic m]
+t = 2*10^-4; // [membrane thickness, cm]
+q_A = 176; // [permeability, barrer]
+D = 4*10^-1; // [tube inside diameter, cm]
+D_A = 5*10^-5; // [diffusuvity, square cm/s]
+Re = 20000; // [reynolds number]
+Sc = 450; // [Schmidt number]
+mtc_p = 0.12; // [square cm/s]
+//*****//
+
+// From equation 9.6, 1 barrer = 8.3*10^-9 square cm/s
+// Therefore
+q_A = q_A*8.3*10^-9; // [square cm/s]
+Q_A = q_A/t; // [permeance, cm/s]
+// The mass-transfer coefficient on the feed side is from equation (2-75) for turbulent flow of a liquid inside a circular pipe:
+Sh = 0.023*Re^0.83*Sc^(1/3);
+// Now mass transfer coefficient
+k_af = Sh*D_A/D; // [cm/s]
+// Total resistance to mass transfer
+res_total = (1/k_af)+(1/Q_A)+(1/mtc_p); // [s/cm]
+// Transmembrane flux of solute A
+N_A = (ci_f-ci_p)/(res_total*100); // [mole/square m.s]
+
+printf("The transmembrane flux of solute A is %e mole/square m.s\n\n",N_A);
+
+percent_mem_res = ((1/Q_A)/res_total)*100; // [%]
+printf("Membrane resistance is %f percent of the total\n\n",percent_mem_res); \ No newline at end of file