diff options
Diffstat (limited to '905/CH8/EX8.3/8_3.sce')
-rwxr-xr-x | 905/CH8/EX8.3/8_3.sce | 44 |
1 files changed, 44 insertions, 0 deletions
diff --git a/905/CH8/EX8.3/8_3.sce b/905/CH8/EX8.3/8_3.sce new file mode 100755 index 000000000..63c1bbace --- /dev/null +++ b/905/CH8/EX8.3/8_3.sce @@ -0,0 +1,44 @@ +clear;
+clc;
+
+// Illustration 8.2
+// Page: 482
+
+printf('Illustration 8.3 - Page: 482\n\n');
+
+// solution
+// A - water vapor B - air
+//*****Data*****
+T = 328; // [dry bulb temperature, K]
+P_total = 1; // [atm]
+H = 30; // [relative humidity, %]
+//*****//
+P_vapA = 15.73; // [vapor pressure of water, kPa]
+P_total = P_total*101.325; // [kPa]
+M_A = 18; // [gram/mole]
+M_B = 29; // [gram/mole]
+
+P_A = (H/100)*P_vapA;// [partial pressure of A,kPa]
+
+printf('Illustration 8.3 (a)\n\n');
+// At dew point partial pressure is equal to vapor pressure
+// Using Antonnie equation we can find dew point temperature
+
+printf("Dew point temperature is 304.5 K\n")
+
+// From equation 8.1
+Y_s = P_A/(P_total-P_A)*(M_A/M_B);
+printf("Absolute humidity of air-water mixture at 328 K is %f kg H2O/kg dry air\n\n",Y_s);
+
+printf('Illustration 8.3 (b)\n\n');
+
+//soluton (b)
+T_ref = 273; // [K]
+C_A = 1.884; // [kJ/kg.K]
+C_B = 1.005; // [kJ/kg.K]
+lambda = 2502.3; // [Latent heat of Vaporization at 273 K, kJ/kg]
+
+// From equation 8.3
+H_s = C_B*(T-T_ref) + Y_s*(C_A*(T-T_ref) + lambda);
+
+printf("Enthalpy per unit mass of dry air of a saturated mixture relative to 273 K is %f kJ/kg dry air\n",H_s);
\ No newline at end of file |