diff options
Diffstat (limited to '905/CH5/EX5.3')
-rwxr-xr-x | 905/CH5/EX5.3/5_3.sce | 102 |
1 files changed, 102 insertions, 0 deletions
diff --git a/905/CH5/EX5.3/5_3.sce b/905/CH5/EX5.3/5_3.sce new file mode 100755 index 000000000..9456a43fc --- /dev/null +++ b/905/CH5/EX5.3/5_3.sce @@ -0,0 +1,102 @@ +clear
+clc;
+
+// Illustration 5.3
+// Page: 295
+
+printf('Illustration 5.3 - Page: 295\n\n');
+
+// solution
+// For tower diameter, packed tower design program of Appendix D is run using // the data from Example 5.2 and packing parameters from Chapter 4.
+
+// For a pressure drop of 300 Pa/m, the program converges to a tower diameter
+Db = 0.641; // [m]
+// Results at the bottom of tower
+fb= 0.733; // [flooding]
+ahb = 73.52; // [m^-1]
+Gmyb = 126; // [mol/square m.s]
+kyb = 3.417; // [mol/square m.s]
+klb = 9.74*10^-5; // [m/s]
+
+// From equation 2.6 and 2.11
+// Fg = ky*(1-y), Fl = kx*(1-x)
+// Assume 1-y = 1-y1 1-x = 1-x1
+// let t = 1-y1 u = 1-x1
+// Therefore
+t = 0.926;
+u = 0.676;
+Fgb = kyb*t; // [mol/square m.s]
+rowlb = 780; // [kg/cubic m]
+Mlb = 159.12; // [gram/mole]
+c = rowlb/Mlb; // [kmle/cubic m]
+Flb = klb*c*u; // [mol/square m.s]
+// From equ 5.19
+Htgb = Gmyb/(Fgb*ahb); // [m]
+
+// Now, we consider the conditions at the top of the absorber
+// For a pressure drop of 228 Pa/m, the program converges to a tower // diameter
+Dt = 0.641; // [m]
+// Results at the top of tower
+ft = 0.668; // [flooding]
+aht = 63.31; // [m^-1]
+Gmyt = 118; // [mol/square m.s]
+kyt = 3.204; // [mol/square m.s]
+klt = 8.72*10^-5; // [m/s]
+
+rowlt = 765; // [kg/cubic m]
+Mlt = 192.7; // [gram/mole]
+cl = rowlt/Mlt; // [kmole/cubic m]
+Fgt = kyt*0.99; // [mole/square m.s]
+Flt = klb*cl*0.953; // [mole/square m.s]
+// From equ 5.19
+Htgt = Gmyt/(Fgt*aht); // [m]
+Htg_avg = (Htgb+Htgt)/2; // [m]
+Fg_avg = (Fgt+Fgb)/2; // [mole/square m.s]
+Fl_avg = (Flb+Flt)*1000/2; // [mole/square m.s]
+
+// The operating curve equation for this system in terms of mole fractions
+// y =
+
+// From Mathcad program figure 5.3
+x1 = 0.324;
+x2 = 0.0476;
+n = 50;
+dx = (x1-x2)/n;
+me = 0.136;
+T = zeros(50,2);
+for j=1:50
+ x(j) = x2+j*dx;
+ y(j) = (0.004+0.154*x(j))/(1.004-0.846*x(j));
+
+ deff('[y] = f12(yint)','y = (1-yint)/(1-y(j)) - ((1-x(j))/(1-yint/me))^(Fl_avg/Fg_avg)');
+ yint(j) = fsolve(0.03,f12);
+ f(j) = 1/(y(j)-yint(j));
+ T(j,1) = y(j);
+ T(j,2) = f(j);
+end
+
+scf(1);
+plot(T(:,1),T(:,2));
+xgrid();
+xlabel("y");
+ylabel("f = 1/(y-yint)");
+
+yo = y(1);
+yn = y(50);
+// From graph between f vs y
+Ntg = 10.612;
+// Therefore
+Z = Htg_avg*Ntg; // [m]
+printf("The total packed height is %f m.\n\n",Z);
+deltaPg = 300*Z; // [Pa]
+Em = 0.60; // [mechanical efficiency]
+Qg = 1.0;
+Wg = (Qg*deltaPg)/Em; // [Power required to force the gas through the tower, W]
+L2 = 1.214; // [kg/s]
+g = 9.8; // [m/square s]
+Wl = L2*g*Z/Em; // [Power required to pump the liquid to the top of the absorber, W]
+printf("The power required to force the gas through the tower is %f W.\n\n",Wg);
+printf("The power required to pump the liquid to the top of the absorber is %f W.\n\n",Wl);
+
+
+
|