diff options
Diffstat (limited to '905/CH3/EX3.9/3_9.sce')
-rwxr-xr-x | 905/CH3/EX3.9/3_9.sce | 48 |
1 files changed, 48 insertions, 0 deletions
diff --git a/905/CH3/EX3.9/3_9.sce b/905/CH3/EX3.9/3_9.sce new file mode 100755 index 000000000..36ad09018 --- /dev/null +++ b/905/CH3/EX3.9/3_9.sce @@ -0,0 +1,48 @@ +clear;
+clc;
+
+// Illustration 3.9
+// Page: 194
+
+printf('Illustration 3.9 - Page: 194\n\n');
+
+// solution
+//*****Data*****//
+// 1-Nitrogen dioxide 2-air
+// From Example 3.8
+Y1 = 0.0242; // [kg NO2/kg air]
+Y2 = 0.0036; // [kg NO2/kg air]
+Vs = 0.488; // [kg air/s]
+M1 = 46; // [gram/mole]
+M2 = 29; // [gram/mole]
+// However here
+X1 = 0;
+// Data_eqm1 = [P1 m] (where 'P1' is Partial pressure of NO2 in mm of Hg, 'm' is solid concentration in kg NO2/kg gel)
+Data_eqm1 = [0 0;2 0.4;4 0.9;6 1.65;8 2.60;10 3.65;12 4.85];
+
+// The equilibrium data are converted to mass ratios as follows:
+// Yi = P1/(760-P1)*46/29 (kg NO2/kg air) Xi = m/100 (kg NO2/kg gel)
+// Equilibrium data
+// Data_eqm = [Xi*100 Yi*100]
+for i = 1:7;
+ Data_eqm(i,2) = Data_eqm1(i,1)*M1*100/((760-Data_eqm1(i,1))*M2);
+ Data_eqm(i,1) = Data_eqm1(i,2);
+end
+
+// From the intersection of the minimum operating line and equilibrium curve
+X2_max = 0.0034; // [kg NO2/kg gel]
+S = (Y1-Y2)/(X1-X2_max); // [kg gel/kg air]
+Ls_min = -S*Vs; // [kg/s]
+
+Ls = 2*Ls_min; // [kg/s]
+Data_minSlope = [X1 Y1;X2_max Y2]*100;
+
+
+scf(4);
+plot(Data_eqm(:,1),Data_eqm(:,2),Data_minSlope(:,1),Data_minSlope(:,2));
+xgrid();
+legend('Equilibrium line ','Minimum Flow Rate Line');
+xlabel("Xa*100, kg NO2/kg gel");
+ylabel("Ya*100, kh NO2/kg air");
+
+printf("The mass velocity of the silica gel required for cocurrent operation is %f kg/s which is 11 times that required for countercurrent operation\n\n",Ls);
\ No newline at end of file |