diff options
Diffstat (limited to '905/CH2/EX2.6/2_6.sce')
-rwxr-xr-x | 905/CH2/EX2.6/2_6.sce | 79 |
1 files changed, 79 insertions, 0 deletions
diff --git a/905/CH2/EX2.6/2_6.sce b/905/CH2/EX2.6/2_6.sce new file mode 100755 index 000000000..7ae43e74f --- /dev/null +++ b/905/CH2/EX2.6/2_6.sce @@ -0,0 +1,79 @@ +clear;
+clc;
+
+// Illustration 2.6
+// Page: 111
+
+printf('Illustration 2.6 - Page: 111\n\n');
+
+// solution
+//*****Data*****//
+// a-UF6 b-air
+M_a = 352; // [molecular weight of UF6, gram/mole]
+M_b = 29; // [gram/mole]
+d = 0.01; // [diameter, m]
+x = 0.1; // [length exposed to air stream, m]
+v = 1; // [m/s]
+Ts = 303; // [surface temperature of solid, K]
+P_a = 27; // [vapor pressure of UF6, kPa]
+Tb = 325; // [bulk temperature of solid ,K]
+P = 101.3; // [kPa]
+R = 8.314; // [cubic m.Pa/mole.K]
+//*****//
+
+y_a1 = P_a/P; // [mole fraction at point 1]
+y_a2 = 0; // [mole fraction at point 2]
+
+// Along the mass-transfer path-cylinder surface (point 1) to bulk air (point 2)
+Tavg = (Ts+Tb)/2; // [K]
+
+// At point 1, the gas is saturated with UF6 vapor, while at point 2 the gas is virtually free of UF6
+// Therefore
+Pavg = (P_a+0)/2; // [average partial pressure, kPa]
+y_a = Pavg/P; // [mole fraction of UF6]
+
+Mavg = M_a*y_a+M_b*(1-y_a); // [gram/mole]
+row_avg = P*Mavg/(R*Tavg); // [kg/cubic m]
+
+// Parameter for c-O2, d-N2 and a-UF6
+yi_c = 0.182; yi_d = 0.685; yi_a = 0.133;
+Tc_c = 154.6; Tc_d = 126.2; Tc_a = 505.8; // [K]
+Pc_c = 50.4; Pc_d = 33.9; Pc_a = 46.6; // [bar]
+M_c = 32; M_d = 28; M_a = 352; // [gram/mole]
+V_c = 73.4; V_d = 89.8; V_a = 250; // [cubic cm/mole]
+Z_c = 0.288; Z_d = 0.290; Z_a = 0.277;
+
+// From equation 2.52 and 2.53
+Tcm = yi_c*Tc_c+yi_d*Tc_d+yi_a*Tc_a; // [K]
+Pcm = 10^6*R*Tcm*(yi_c*Z_c+yi_d*Z_d+yi_a*Z_a)/((yi_c*V_c+yi_d*V_d+yi_a*V_a)*100000); // [bar]
+M_avg = yi_c*M_c+yi_d*M_d+yi_a*M_a; // [gram/mole]
+
+// From equation 2.50
+Em = 0.176*(Tcm/(M_avg^3*Pcm^4))^(1/6); // [uP]^-1
+
+// From equation 2.51
+Trm = Tavg/Tcm;
+f_Trm = (0.807*Trm^0.618)-(0.357*exp(-0.449*Trm))+(0.340*exp(-4.058*Trm))+0.018;
+// From equation 2.49
+u = f_Trm/Em; // [uP]
+u = u*10^-7; // [viscosity, kg/m.s]
+
+Re = d*v*row_avg/u; // [Renoylds number]
+
+// Diffusivity of UF6 vapors in air at 314 K and 1 atm from equation 1.49
+D_ab = 0.0904; // [square cm/s]
+
+Sc = u/(row_avg*D_ab*10^-4); // [Schmidt number]
+
+Sh_avg = 0.43 + 0.532*Re^0.5*Sc^0.31; // [Sherwood number]
+// From equation 1.7
+c = P/(R*Tavg); // [kmole/cubic m]
+// From Table 2.1
+F_av = Sh_avg*D_ab*c*10^-4/d; // [kmole/square m.s]
+
+// From equation 2.2
+N_avg = F_av*log((1-y_a2)/(1-y_a1)); // [kmole/square m.s]
+S = 2*%pi*d^2/4 +%pi*d*x; // [total surface area of the cylinder, square m]
+
+w_a = N_avg*S*M_a; // [rate of sublimation of the solid, kg/s]
+printf("Rate of sublimation of a cylinder of UF6 is %e kg/s\n\n",w_a);
\ No newline at end of file |