diff options
Diffstat (limited to '905/CH1/EX1.19/1_19.sce')
-rwxr-xr-x | 905/CH1/EX1.19/1_19.sce | 50 |
1 files changed, 50 insertions, 0 deletions
diff --git a/905/CH1/EX1.19/1_19.sce b/905/CH1/EX1.19/1_19.sce new file mode 100755 index 000000000..70a0bd3d5 --- /dev/null +++ b/905/CH1/EX1.19/1_19.sce @@ -0,0 +1,50 @@ +clear;
+clc;
+
+// Illustration 1.19
+// Page: 54
+
+printf('Illustration 1.19 - Page:54 \n\n');
+// Solution
+
+//*****Data*****//
+// a-CuS04 b-H2O
+T = 273; // [K]
+delta = 0.01; // [mm]
+sol_ab = 24.3; // [gram/100 gram water]
+den_ab = 1140; // [kg/cubic m]
+D_ab = 3.6*10^-10; // [square m/s]
+den_b = 999.8; // [kg/cubic m]
+//*****//
+
+// both fluxes are in the same direction; therefore, they are both positive and relation is N_b = 5N_a (where N_b and N_a are molar fluxes of component 'a' and 'b')
+// From equation (1.76), si_a = 1/6 = 0.167
+si_a = 0.167;
+// Calculation of mole fraction of component 'a'
+// Basis: 100 gram H2O (b)
+M_a = 159.63; // [gram/mole]
+M_b = 18; // [gram/mole]
+M_c =249.71; // [here M_c is molecular mass of hydrated CuSO4, gram/mole]
+m_a = 24.3; // [gram]
+m_c = m_a*(M_a/M_c); // [here m_c is the mass of CuSO4 in 24.3 gram of crystal, gram]
+m_d = m_a-m_c; // [here m_d is mass of hydration of water in the crystal, gram]
+m_b_total = 100+m_d; // [total mass of water, gram]
+
+x_a1 = (m_c/M_a)/((m_c/M_a)+(m_b_total/M_b));
+x_a2 = 0;
+
+// At point 1, the average molecular weight is
+M_1 = x_a1*M_a+(1-x_a1)*M_b; // [gram/mole]
+// At point 2, the average molecular weight is
+M_2 = x_a2*M_a+(1-x_a2)*M_b
+// Molar density at point 1 and 2
+row_1 = den_ab/M_1; // [kmole/cubic m]
+row_2 = den_b/M_2
+row_avg = (row_1+row_2)/2; // [kmole/cubic m]
+
+// Using equation 1.96
+
+N_a = si_a*D_ab*row_avg*log((si_a-x_a2)/(si_a-x_a1))/(delta*10^-3); // [kmole/square m.s]
+rate = N_a*M_c*3600; // [kg/square m of crystal surface area per hour]
+printf("the rate at which the crystal dissolves in solution is %f kg/square m of crystal surface area per hour",rate);
+
|