summaryrefslogtreecommitdiff
path: root/905/CH1/EX1.16/1_16.sce
diff options
context:
space:
mode:
Diffstat (limited to '905/CH1/EX1.16/1_16.sce')
-rwxr-xr-x905/CH1/EX1.16/1_16.sce26
1 files changed, 26 insertions, 0 deletions
diff --git a/905/CH1/EX1.16/1_16.sce b/905/CH1/EX1.16/1_16.sce
new file mode 100755
index 000000000..fcdb43084
--- /dev/null
+++ b/905/CH1/EX1.16/1_16.sce
@@ -0,0 +1,26 @@
+clear;
+clc;
+
+// Illustration 1.16
+// Page: 44
+
+printf('Illustration 1.16 - Page:44 \n\n');
+// Solution
+
+//*****Data*****//
+// Nickel Carbonyl-A carbon monoxide-B
+T = 323; // [K]
+P = 1; // [atm]
+R = 8.314; // [cubic m.Pa/mole.K]
+y_A1 = 1.0;
+y_A2 = 0.5;
+delta = 0.625; // [mm]
+D_AB = 20; // [square mm/s]
+//*****//
+
+// The stoichiometry of the reaction determines the relation between the fluxes: from equation (1-59), N_B = - 4N_A and N_A + N_B = -3NA
+// Molar flux fraction si_A = N_A/(N_A+N_B) = N_A/(-3*N_A) = -1/3
+si_A = -1/3;
+// Using equation 1.78
+N_A = si_A*(D_AB*10^-6*P*10^5*log((si_A-y_A2)/(si_A-y_A1))/(R*T*delta*10^-3));
+printf("The molar flux of component A is %f mole/square m.s",N_A);