summaryrefslogtreecommitdiff
path: root/839/CH9
diff options
context:
space:
mode:
Diffstat (limited to '839/CH9')
-rwxr-xr-x839/CH9/EX9.1/Example_9_1.sce20
-rwxr-xr-x839/CH9/EX9.2/Example_9_2.sce30
-rwxr-xr-x839/CH9/EX9.3/Example_9_3.sce21
-rwxr-xr-x839/CH9/EX9.4/Example_9_4.sce17
-rwxr-xr-x839/CH9/EX9.5/Example_9_5.sce33
-rwxr-xr-x839/CH9/EX9.6/Example_9_6.sce53
-rwxr-xr-x839/CH9/EX9.7/Example_9_7.sce24
-rwxr-xr-x839/CH9/EX9.8/Example_9_8.sce27
8 files changed, 225 insertions, 0 deletions
diff --git a/839/CH9/EX9.1/Example_9_1.sce b/839/CH9/EX9.1/Example_9_1.sce
new file mode 100755
index 000000000..733b15c17
--- /dev/null
+++ b/839/CH9/EX9.1/Example_9_1.sce
@@ -0,0 +1,20 @@
+//clear//
+clear;
+clc;
+
+//Exapmle 9.1
+//Given
+Dt = 6; //[ft]
+h = 2; //[ft]
+n = 90/60; //[rps]
+mu = 12*6.72*10^-4; //[lb/ft-s]
+g = 32.17; //[ft/s^2]
+rho = 93.5; //[lb/ft^3]
+Da = 2; // [ft]
+
+Nre = Da^2*n*rho/mu;
+//From curve A of Fig. 9.12
+Np = 5.8
+//Form Eq.(9.20)
+P = Np*rho*n^3*Da^5/g //[ft-lbf/s]
+P = P/550 //[hp]
diff --git a/839/CH9/EX9.2/Example_9_2.sce b/839/CH9/EX9.2/Example_9_2.sce
new file mode 100755
index 000000000..f14ebb69d
--- /dev/null
+++ b/839/CH9/EX9.2/Example_9_2.sce
@@ -0,0 +1,30 @@
+//clear//
+clear;
+clc;
+
+//Example 9.2
+//Given
+Dt = 6; //[ft]
+h = 2; //[ft]
+n = 90/60; //[rps]
+mu = 12*6.72*10^-4; //[lb/ft-s]
+g = 32.17; //[ft/s^2]
+rho = 93.5; //[lb/ft^3]
+Da = 2; // [ft]
+
+Nre = Da^2*n*rho/mu;
+//Froude number
+Nfr = n^2*Da/g;
+//From Table 9.1
+a = 1;
+b = 40.0;
+//Using Eq.(9.19)
+m = (a-log(Nre)/2.303)/b;
+//Using Fig. 9.12, curve D,
+Np = 1.07;
+//Corrected valus of Np
+Np = Np*Nfr^m;
+
+//Form Eq.(9.20)
+P = Np*rho*n^3*Da^5/g //[ft-lbf/s]
+P = P/550 //[hp]
diff --git a/839/CH9/EX9.3/Example_9_3.sce b/839/CH9/EX9.3/Example_9_3.sce
new file mode 100755
index 000000000..19cca12fc
--- /dev/null
+++ b/839/CH9/EX9.3/Example_9_3.sce
@@ -0,0 +1,21 @@
+//clear//
+clear;
+clc;
+
+//Example 9.3
+//Given
+Dt = 6; //[ft]
+h = 2; //[ft]
+n = 90/60; //[rps]
+mu = 1200*6.72*10^-2; //[lb/ft-s]
+g = 32.17; //[ft/s^2]
+rho = 70 //[lb/ft^3]
+Da = 2; // [ft]
+
+Nre = Da^2*n*rho/mu;
+//From Table 9.3
+KL = 65;
+//From Eq.(9.21)
+Np = KL/Nre;
+P = Np*rho*n^3*Da^5/g //[ft-lbf/s]
+P = P/550 //[hp]
diff --git a/839/CH9/EX9.4/Example_9_4.sce b/839/CH9/EX9.4/Example_9_4.sce
new file mode 100755
index 000000000..5da5391ff
--- /dev/null
+++ b/839/CH9/EX9.4/Example_9_4.sce
@@ -0,0 +1,17 @@
+//clear//
+clear;
+clc;
+
+//Example 9.4
+//Given
+Dt = 6; //[ft]
+Da = 2; //[ft]
+n = 80/60; //[rps]
+T = 70; //[F]
+rho = 62.3; //[lb/ft^3], From Appendix 14
+mu = 6.6*10^-4; // [lb/ft-s], From Appendix 14
+
+Nre = Da^2*n*rho/mu;
+//From Fig. 9.15
+ntT = 36;
+tT = ntT/1.333 //[s]
diff --git a/839/CH9/EX9.5/Example_9_5.sce b/839/CH9/EX9.5/Example_9_5.sce
new file mode 100755
index 000000000..155063c99
--- /dev/null
+++ b/839/CH9/EX9.5/Example_9_5.sce
@@ -0,0 +1,33 @@
+//clear//
+clear;
+clc;
+
+//Example 9.5
+//Given
+Dt = 6; //[ft]
+H = 8; //[ft]
+T = 70; //[F]
+sp_gr = 3.18;
+w_fr = 0.25;
+Da = 2; //[ft]
+h = 1.5; //[ft]
+gc = 32.17; //[ft-lb/lbf-s^2]
+// (a)
+//Using data of Buurman et al. in Fig.(9.19)
+//change in nc
+delta_nc = (104/200)^0.2*(2.18/1.59)^0.45*(33.3/11.1)^0.13;
+//change in P
+dalta_P = delta_nc^3;
+
+//Using Fig. 9.19
+V = %pi/4*Dt^2*H*7.48 ; //[gal]
+P = 3.3*V/1000 //[hp]
+
+//(b)
+//From Table 9.3, for a cour blade turbine,
+KT = 1.27;
+Np = KT;
+//slurry density
+rho_m = 1/((w_fr/sp_gr)+(1-w_fr))*62; // [lb/ft^3]
+
+nc = (P*gc*550/(Np*rho_m*Da^5))^(1/3) // [r/s]
diff --git a/839/CH9/EX9.6/Example_9_6.sce b/839/CH9/EX9.6/Example_9_6.sce
new file mode 100755
index 000000000..ae7b7837f
--- /dev/null
+++ b/839/CH9/EX9.6/Example_9_6.sce
@@ -0,0 +1,53 @@
+//clear//
+clear;
+clc;
+
+//Example 9.6
+//Given
+Dt = 2; //[m]
+Da = 0.667; //[m]
+n = 180/60; //[rps]
+T = 20; //[C]
+qg = 100; //[m^3/h]
+rho = 1000; //[kg/m^3]
+mu = 10^-3; //[kg/m-s]
+ut = 0.2; //[m/s]
+//(a)
+//The power input is calculated and followed by correction of gas effect
+Nre = n*Da^2*rho/mu;
+//For a flat blade turbine, from Table 9.3
+KT = 5.75;
+//Using Eq.(9.24)
+Po = KT*n^3*Da^5*rho/1000; //[kW]
+At = %pi/4*Dt^2; //[m^2]
+//Superficial gas velocity
+Vs_bar = At*qg/3600/10 //[m/s]
+//From Fig. 9.20 Pg/Po = 0.60
+Pg = Po*0.6; //[kW]
+//From Fig.9.7, depth of liquid is equal to diameter of the tank
+//Hence, liquid volume
+V = %pi/4*Dt^2*Dt; //[m^3]
+//The input power per unit volume
+PgbyV = Pg/V ; //[kW/m^3]
+
+//(b)
+sigma = 72.75; //[g/s^2]
+rho_L = 10^-3; //[g/mm]
+PgbyV = PgbyV*10^3 ; //[g/mm-s^2]
+//Using Eq.(9.46)
+//Let x = shi^(0.5)
+//solving the equation as quadratic equation
+a = 1;
+b = -(Vs_bar/ut)^0.5;
+c = -0.216*((PgbyV)^0.4)*(rho_L^0.2)/(sigma^0.6)*(Vs_bar/ut)^(0.5);
+x = (-b+sqrt(b^2-4*a*c))/(2*a);
+shi = x^2;
+
+//(c)
+//To find out mean bubble diameter
+//Using Eq.(9.44)
+Ds_bar = 4.15*sigma^0.6/(PgbyV^0.4*rho_L^0.2)*shi^0.5+0.9 // [mm]
+
+//(d)
+//From Eq.(9.40)
+aprime = 6*shi/Ds_bar //[mm^-1]
diff --git a/839/CH9/EX9.7/Example_9_7.sce b/839/CH9/EX9.7/Example_9_7.sce
new file mode 100755
index 000000000..ab36bb0f1
--- /dev/null
+++ b/839/CH9/EX9.7/Example_9_7.sce
@@ -0,0 +1,24 @@
+//clear//
+clear;
+clc;
+
+//Exapmle 9.7
+//Given
+Dt = 2; //[m]
+Da = 0.667; //[m]
+n = 180/60; //[rps]
+T = 20; //[C]
+qg = 100; //[m^3/h]
+rho = 1000; //[kg/m^3]
+mu = 10^-3; //[kg/m-s]
+ut = 0.2; //[m/s]
+At = %pi/4*Dt^2; //[m^2]
+//Using values form Example 7.6
+//Assuming Pg/Po decresaes to 0.25
+PgbyV = 0.25*20490/6.28; //[W/m^3]
+//Using Eq.(9.47)
+Vs_barc = 0.114*(PgbyV)*(Dt/1.5)^0.17/1000 //[m/s]
+qg = Vs_barc*At*3600 //[m^3/h]
+//The calculated flooding velocity is beyond the range of the data on which Eq.(9.47)
+//was based, so it may not be relaible. Based on Vs_barc, the highest measured value, qg
+//would be 850 m^3/h.
diff --git a/839/CH9/EX9.8/Example_9_8.sce b/839/CH9/EX9.8/Example_9_8.sce
new file mode 100755
index 000000000..44af9cf3b
--- /dev/null
+++ b/839/CH9/EX9.8/Example_9_8.sce
@@ -0,0 +1,27 @@
+//clear//
+clear;
+clc;
+
+//Example 9.8
+//Given
+D1 = 1; //[ft]
+D6 = 6
+Nre_i = 10^4;
+Da = 4; //[in.]
+t1 = 15; //[s]
+P = 2; //[hp/gal]
+
+//(a)
+//Using Fig. 9.15
+//the mixing factor ntT is constant and time tT is asumed constant,
+//speed n will be the same in both vessels.
+//Using Eq.(9.24) with consant density
+PbyD_ratio = (D6/D1)^2;
+//The Power input required in the 6-ft vessel is then
+Pin = 2*PbyD_ratio //[hp/1000gal]
+
+//(b)
+//Using Eq.(9.54) with same input power per unit volume in both vessels
+n6byn1 = (D6/D1)^(2/3)
+//blending in the 6-ft vessel would be
+t6 = t1*n6byn1 // [s]