summaryrefslogtreecommitdiff
path: root/833/CH2
diff options
context:
space:
mode:
Diffstat (limited to '833/CH2')
-rwxr-xr-x833/CH2/EX2.1/Ex2_1.sce22
-rwxr-xr-x833/CH2/EX2.1/Ex2_1.txt22
-rwxr-xr-x833/CH2/EX2.1/Result2_1.txt11
-rwxr-xr-x833/CH2/EX2.2/Ex2_2.sce20
-rwxr-xr-x833/CH2/EX2.2/Ex2_2.txt20
-rwxr-xr-x833/CH2/EX2.2/Result2_2.txt12
-rwxr-xr-x833/CH2/EX2.3/Ex2_3.sce19
-rwxr-xr-x833/CH2/EX2.3/Ex2_3.txt19
-rwxr-xr-x833/CH2/EX2.3/Result2_3.txt16
-rwxr-xr-x833/CH2/EX2.4/Ex2_4.sce29
-rwxr-xr-x833/CH2/EX2.4/Ex2_4.txt29
-rwxr-xr-x833/CH2/EX2.4/Result2_4.txt7
-rwxr-xr-x833/CH2/EX2.5/Ex2_5.sce28
-rwxr-xr-x833/CH2/EX2.5/Ex2_5.txt28
-rwxr-xr-x833/CH2/EX2.5/Result2_5.txt16
-rwxr-xr-x833/CH2/EX2.6/Ex2_6.sce20
-rwxr-xr-x833/CH2/EX2.6/Ex2_6.txt20
-rwxr-xr-x833/CH2/EX2.6/Result2_6.txt4
-rwxr-xr-x833/CH2/EX2.7/Ex2_7.sce28
-rwxr-xr-x833/CH2/EX2.7/Ex2_7.txt28
-rwxr-xr-x833/CH2/EX2.7/Result2_7.txt24
-rwxr-xr-x833/CH2/EX2.8/Ex2_8.sce19
-rwxr-xr-x833/CH2/EX2.8/Ex2_8.txt19
-rwxr-xr-x833/CH2/EX2.8/Result2_8.txt8
-rwxr-xr-x833/CH2/EX2.9/Ex2_9.sce24
-rwxr-xr-x833/CH2/EX2.9/Ex2_9.txt24
-rwxr-xr-x833/CH2/EX2.9/Result2_9.txt8
27 files changed, 524 insertions, 0 deletions
diff --git a/833/CH2/EX2.1/Ex2_1.sce b/833/CH2/EX2.1/Ex2_1.sce
new file mode 100755
index 000000000..d81761fa5
--- /dev/null
+++ b/833/CH2/EX2.1/Ex2_1.sce
@@ -0,0 +1,22 @@
+//Caption:Find (a)all day efficiency (b)commercial efficiency on full load (c)efficiency on half load
+//Exa:2_1
+clc;
+clear;
+close;
+P_s=50//Power supplied(in kVA)
+V_1=440//Primary side voltage(in volt)
+V_2=220//Secondary side voltage(in volt)
+t_1=6//Full load(in hours)
+t_2=2//50% load(in hours)
+Cu_1=2//Copper loss on full load(in KW)
+Fe=1//Iron losses(in KW)
+E_1=P_s*t_1//Energy used on full load(in watt-hours)
+E_2=0.5*P_s*t_2//Energy used on half load(in watt-hours)
+Cu_2=Cu_1*0.25//Copper losses on half load(in watts)
+E=(Cu_1*t_1)+(Cu_2*t_2)+(Fe*24)//Energy lost on losses(in watt-hours)
+eff_1=(E_1+E_2)/(E_1+E_2+E)*100
+disp(eff_1,'(a)All day efficiency(in%)=')
+eff_2=(E_2)/(E_2+Cu_1+Fe)*100
+disp(eff_2,'(b)commercial efficiency on full load(in%)=')
+eff_3=(0.5*E_2)/(0.5*E_2+Cu_2+Fe)*100
+disp(eff_3,'(c)efficiency on half load(in%)=') \ No newline at end of file
diff --git a/833/CH2/EX2.1/Ex2_1.txt b/833/CH2/EX2.1/Ex2_1.txt
new file mode 100755
index 000000000..d81761fa5
--- /dev/null
+++ b/833/CH2/EX2.1/Ex2_1.txt
@@ -0,0 +1,22 @@
+//Caption:Find (a)all day efficiency (b)commercial efficiency on full load (c)efficiency on half load
+//Exa:2_1
+clc;
+clear;
+close;
+P_s=50//Power supplied(in kVA)
+V_1=440//Primary side voltage(in volt)
+V_2=220//Secondary side voltage(in volt)
+t_1=6//Full load(in hours)
+t_2=2//50% load(in hours)
+Cu_1=2//Copper loss on full load(in KW)
+Fe=1//Iron losses(in KW)
+E_1=P_s*t_1//Energy used on full load(in watt-hours)
+E_2=0.5*P_s*t_2//Energy used on half load(in watt-hours)
+Cu_2=Cu_1*0.25//Copper losses on half load(in watts)
+E=(Cu_1*t_1)+(Cu_2*t_2)+(Fe*24)//Energy lost on losses(in watt-hours)
+eff_1=(E_1+E_2)/(E_1+E_2+E)*100
+disp(eff_1,'(a)All day efficiency(in%)=')
+eff_2=(E_2)/(E_2+Cu_1+Fe)*100
+disp(eff_2,'(b)commercial efficiency on full load(in%)=')
+eff_3=(0.5*E_2)/(0.5*E_2+Cu_2+Fe)*100
+disp(eff_3,'(c)efficiency on half load(in%)=') \ No newline at end of file
diff --git a/833/CH2/EX2.1/Result2_1.txt b/833/CH2/EX2.1/Result2_1.txt
new file mode 100755
index 000000000..9f444818a
--- /dev/null
+++ b/833/CH2/EX2.1/Result2_1.txt
@@ -0,0 +1,11 @@
+(a)All day efficiency(in%)=
+
+ 90.439276
+
+ (b)commercial efficiency on full load(in%)=
+
+ 94.339623
+
+ (c)efficiency on half load(in%)=
+
+ 94.339623 \ No newline at end of file
diff --git a/833/CH2/EX2.2/Ex2_2.sce b/833/CH2/EX2.2/Ex2_2.sce
new file mode 100755
index 000000000..e6b124125
--- /dev/null
+++ b/833/CH2/EX2.2/Ex2_2.sce
@@ -0,0 +1,20 @@
+//Caption:Find (a)Efficiency of transformer at half load at 0.8 power factor lagging (b)At what load will the efficiency be maximum and maximum efficiency?
+//Exa:2.2
+clc;
+clear;
+close;
+P_s=25000//Power supplied(in VA)
+V_1=3300//Voltage on primary side(in volts)
+V_2=230//Voltage on secondary side(in volts)
+f=50//frequency(in hertz)
+P_i=300//Iron loss(in watt)
+P_c=400//Copper loss(in watt)
+pf=0.8//Power factor
+Cu=P_c*(0.5^2)//Copper loss on half load
+P_o=P_s*0.5*pf//Output of transformer on half load
+eff=(P_o)/(P_o+Cu+P_i)*100
+disp(eff,'(a)Efficiency of transformer at half load(in %)=')
+x=sqrt(P_i/P_c)*20000
+disp(x,'(b)Load for maximum efficiency(in watt)=')
+eff_max=(x)/(x+P_i+P_i)*100
+disp(eff_max,'Maximum efficiency(in%)=') \ No newline at end of file
diff --git a/833/CH2/EX2.2/Ex2_2.txt b/833/CH2/EX2.2/Ex2_2.txt
new file mode 100755
index 000000000..f5a2f9a58
--- /dev/null
+++ b/833/CH2/EX2.2/Ex2_2.txt
@@ -0,0 +1,20 @@
+//Caption:Find (a)Efficiency of transformer at half load at 0.8 power factor lagging (b)At what load will the efficiency be maximum and maximum?
+//Exa:2.2
+clc;
+clear;
+close;
+P_s=25000//Power supplied(in VA)
+V_1=3300//Voltage on primary side(in volts)
+V_2=230//Voltage on secondary side(in volts)
+f=50//frequency(in hertz)
+P_i=300//Iron loss(in watt)
+P_c=400//Copper loss(in watt)
+pf=0.8//Power factor
+Cu=P_c*(0.5^2)//Copper loss on half load
+P_o=P_s*0.5*pf//Output of transformer on half load
+eff=(P_o)/(P_o+Cu+P_i)*100
+disp(eff,'(a)Efficiency of transformer at half load(in %)=')
+x=sqrt(P_i/P_c)*20000
+disp(x,'(b)Load for maximum efficiency(in watt)=')
+eff_max=(x)/(x+P_i+P_i)*100
+disp(eff_max,'Maximum efficiency(in%)=') \ No newline at end of file
diff --git a/833/CH2/EX2.2/Result2_2.txt b/833/CH2/EX2.2/Result2_2.txt
new file mode 100755
index 000000000..f501d857e
--- /dev/null
+++ b/833/CH2/EX2.2/Result2_2.txt
@@ -0,0 +1,12 @@
+(a)Efficiency of transformer at half load(in %)=
+
+ 96.153846
+
+ (b)Load for maximum efficiency(in watt)=
+
+ 17320.508
+
+ Maximum efficiency(in%)=
+
+ 96.651881
+ \ No newline at end of file
diff --git a/833/CH2/EX2.3/Ex2_3.sce b/833/CH2/EX2.3/Ex2_3.sce
new file mode 100755
index 000000000..d140ead88
--- /dev/null
+++ b/833/CH2/EX2.3/Ex2_3.sce
@@ -0,0 +1,19 @@
+//Caption:Find (a)% resistance (b)Regulation for power factors- unity, 0.8 lagging and 0.8 leading
+//Exa:2_3
+clc;
+clear;
+close;
+L_o=1//Ohmic loss(%)
+X=6//Reactance(in %)
+pf_1=0.8//lagging power factor
+pf_2=0.8//leading power factor
+R=L_o
+disp(R,'(a)% resistance(in %)=')
+Re_1=L_o
+disp(Re_1,'(b)Regulation at unity power factor(in%)=')
+theta=(acosd(pf_1))
+a=sind(theta)
+Re_2=L_o*pf_1+X*a
+disp(Re_2,'Regulation at 0.8 lagging power factor(in%)=')
+Re_3=L_o*pf_2-X*a
+disp(Re_3,'Regulation at leading power factor(in%)=') \ No newline at end of file
diff --git a/833/CH2/EX2.3/Ex2_3.txt b/833/CH2/EX2.3/Ex2_3.txt
new file mode 100755
index 000000000..d140ead88
--- /dev/null
+++ b/833/CH2/EX2.3/Ex2_3.txt
@@ -0,0 +1,19 @@
+//Caption:Find (a)% resistance (b)Regulation for power factors- unity, 0.8 lagging and 0.8 leading
+//Exa:2_3
+clc;
+clear;
+close;
+L_o=1//Ohmic loss(%)
+X=6//Reactance(in %)
+pf_1=0.8//lagging power factor
+pf_2=0.8//leading power factor
+R=L_o
+disp(R,'(a)% resistance(in %)=')
+Re_1=L_o
+disp(Re_1,'(b)Regulation at unity power factor(in%)=')
+theta=(acosd(pf_1))
+a=sind(theta)
+Re_2=L_o*pf_1+X*a
+disp(Re_2,'Regulation at 0.8 lagging power factor(in%)=')
+Re_3=L_o*pf_2-X*a
+disp(Re_3,'Regulation at leading power factor(in%)=') \ No newline at end of file
diff --git a/833/CH2/EX2.3/Result2_3.txt b/833/CH2/EX2.3/Result2_3.txt
new file mode 100755
index 000000000..b49f69141
--- /dev/null
+++ b/833/CH2/EX2.3/Result2_3.txt
@@ -0,0 +1,16 @@
+(a)% resistance(in %)=
+
+ 1.
+
+ (b)Regulation at unity power factor(in%)=
+
+ 1.
+
+ Regulation at 0.8 lagging power factor(in%)=
+
+ 4.4
+
+ Regulation at leading power factor(in%)=
+
+ - 2.8
+ \ No newline at end of file
diff --git a/833/CH2/EX2.4/Ex2_4.sce b/833/CH2/EX2.4/Ex2_4.sce
new file mode 100755
index 000000000..77ab56622
--- /dev/null
+++ b/833/CH2/EX2.4/Ex2_4.sce
@@ -0,0 +1,29 @@
+//Caption:Find Regulation on full load at 0.8 power factor lagging
+//Exa:2_4
+clc;
+clear;
+close;
+P_s=500000//Power supplied(in VA)
+V_1=2200//Voltage on primary side(in volt)
+V_2=500//Voltage on secondary side(in volt)
+f=50//frequency(in hertz)
+Eff=97//Efficiency of transformer(in %)
+Eff_m=75//Maximum efficiency(in %) of its full load
+Z_1=10//Impedance(in %)
+pf_1=1//Power factor for maximum efficiency
+pf_2=0.8//Power factor lagging
+I_fl=P_s/V_2
+I=(Eff_m*I_fl)/100
+Losses=(100-Eff)/100
+Cu=Losses/2
+Fe=Losses/2
+C=(Cu*P_s*Eff_m)/100
+R=C/(I^2)
+V=(Z_1*V_2)/100
+Z=V/I_fl
+X=sqrt(Z^2-R^2)
+theta=(acosd(pf_2))
+Re=(I_fl*R*pf_2)+(I_fl*X*sind(theta))
+disp(Re,'Regulation on full load at 0.8 power factor lagging(in volt)=')
+Reg=(Re/V_2)*100
+disp(Reg,'Percentage Regulation(in%)=') \ No newline at end of file
diff --git a/833/CH2/EX2.4/Ex2_4.txt b/833/CH2/EX2.4/Ex2_4.txt
new file mode 100755
index 000000000..77ab56622
--- /dev/null
+++ b/833/CH2/EX2.4/Ex2_4.txt
@@ -0,0 +1,29 @@
+//Caption:Find Regulation on full load at 0.8 power factor lagging
+//Exa:2_4
+clc;
+clear;
+close;
+P_s=500000//Power supplied(in VA)
+V_1=2200//Voltage on primary side(in volt)
+V_2=500//Voltage on secondary side(in volt)
+f=50//frequency(in hertz)
+Eff=97//Efficiency of transformer(in %)
+Eff_m=75//Maximum efficiency(in %) of its full load
+Z_1=10//Impedance(in %)
+pf_1=1//Power factor for maximum efficiency
+pf_2=0.8//Power factor lagging
+I_fl=P_s/V_2
+I=(Eff_m*I_fl)/100
+Losses=(100-Eff)/100
+Cu=Losses/2
+Fe=Losses/2
+C=(Cu*P_s*Eff_m)/100
+R=C/(I^2)
+V=(Z_1*V_2)/100
+Z=V/I_fl
+X=sqrt(Z^2-R^2)
+theta=(acosd(pf_2))
+Re=(I_fl*R*pf_2)+(I_fl*X*sind(theta))
+disp(Re,'Regulation on full load at 0.8 power factor lagging(in volt)=')
+Reg=(Re/V_2)*100
+disp(Reg,'Percentage Regulation(in%)=') \ No newline at end of file
diff --git a/833/CH2/EX2.4/Result2_4.txt b/833/CH2/EX2.4/Result2_4.txt
new file mode 100755
index 000000000..998c015a5
--- /dev/null
+++ b/833/CH2/EX2.4/Result2_4.txt
@@ -0,0 +1,7 @@
+ Regulation on full load at 0.8 power factor lagging(in volt)=
+
+ 37.393877
+
+ Percentage Regulation(in%)=
+
+ 7.4787754 \ No newline at end of file
diff --git a/833/CH2/EX2.5/Ex2_5.sce b/833/CH2/EX2.5/Ex2_5.sce
new file mode 100755
index 000000000..fc8b081b8
--- /dev/null
+++ b/833/CH2/EX2.5/Ex2_5.sce
@@ -0,0 +1,28 @@
+//Caption: Find:(a) R_o (b)X_o (c)Resistance reffered to l.v side (d)Reactance reffered to l.v side
+//Exa:2.5
+clc;
+clear;
+close;
+P_s=5000//Power Supplied(in VA)
+V_1=220//Primary side voltage(in volt)
+V_2=440//Secondary side voltage(in volt)
+f=50//frequency(in hertz)
+I_o=0.75//Open circuit test current(in A)
+P_o=75//Open circuit test power(in watt)
+V_s=16//Short circuit test voltage(in volt)
+P_c=80//Short circuit test power(in watt)
+pf=(P_o)/(V_1*I_o)
+a=sind(acosd(pf))
+R_o=(V_1)/(I_o*pf)
+disp(R_o,'(a)R_o(in ohms)=')
+X_o=(V_1)/(I_o*a)
+disp(X_o,'(b)X_o(in ohms)=')
+I_l=P_s/V_2
+Z=V_s/I_l
+R=(P_c)/(I_l^2)
+X=sqrt(Z^2-R^2)
+n=V_2/V_1
+r=(R)/(n^2)
+disp(r','(c)resistance reffered to low voltage side(in ohms)=')
+x=(X)/(n^2)
+disp(x,'(d)reactane reffered to low voltage side(in ohms)=') \ No newline at end of file
diff --git a/833/CH2/EX2.5/Ex2_5.txt b/833/CH2/EX2.5/Ex2_5.txt
new file mode 100755
index 000000000..fc8b081b8
--- /dev/null
+++ b/833/CH2/EX2.5/Ex2_5.txt
@@ -0,0 +1,28 @@
+//Caption: Find:(a) R_o (b)X_o (c)Resistance reffered to l.v side (d)Reactance reffered to l.v side
+//Exa:2.5
+clc;
+clear;
+close;
+P_s=5000//Power Supplied(in VA)
+V_1=220//Primary side voltage(in volt)
+V_2=440//Secondary side voltage(in volt)
+f=50//frequency(in hertz)
+I_o=0.75//Open circuit test current(in A)
+P_o=75//Open circuit test power(in watt)
+V_s=16//Short circuit test voltage(in volt)
+P_c=80//Short circuit test power(in watt)
+pf=(P_o)/(V_1*I_o)
+a=sind(acosd(pf))
+R_o=(V_1)/(I_o*pf)
+disp(R_o,'(a)R_o(in ohms)=')
+X_o=(V_1)/(I_o*a)
+disp(X_o,'(b)X_o(in ohms)=')
+I_l=P_s/V_2
+Z=V_s/I_l
+R=(P_c)/(I_l^2)
+X=sqrt(Z^2-R^2)
+n=V_2/V_1
+r=(R)/(n^2)
+disp(r','(c)resistance reffered to low voltage side(in ohms)=')
+x=(X)/(n^2)
+disp(x,'(d)reactane reffered to low voltage side(in ohms)=') \ No newline at end of file
diff --git a/833/CH2/EX2.5/Result2_5.txt b/833/CH2/EX2.5/Result2_5.txt
new file mode 100755
index 000000000..d8ec18453
--- /dev/null
+++ b/833/CH2/EX2.5/Result2_5.txt
@@ -0,0 +1,16 @@
+(a)R_o(in ohms)=
+
+ 645.33333
+
+ (b)X_o(in ohms)=
+
+ 329.32029
+
+ (c)resistance reffered to low voltage side(in ohms)=
+
+ 0.15488
+
+ (d)reactane reffered to low voltage side(in ohms)=
+
+ 0.3160952
+ \ No newline at end of file
diff --git a/833/CH2/EX2.6/Ex2_6.sce b/833/CH2/EX2.6/Ex2_6.sce
new file mode 100755
index 000000000..dde90ce87
--- /dev/null
+++ b/833/CH2/EX2.6/Ex2_6.sce
@@ -0,0 +1,20 @@
+//Caption:Find voltage for h.v voltage side on full load at 0.8 power factor lagging when secondary terminal voltage is 240 volts
+//Exa:2.6
+clc;
+clear;
+close;
+P_s=100000//Supplied power(in VA)
+V_1=6600//Primary side voltage(in volt)
+V_2=240//Secondary side voltage(in volt)
+f=50//frequency(in hertz)
+I_sh=5//short circuit test current(in A)
+P_sh=109//short circuit test power(in watt)
+V_sh=50//short circuit test voltage(in volt)
+pf=0.8//Power factor
+Z=V_sh/I_sh
+R=P_sh/(I_sh^2)
+X=sqrt(Z^2-R^2)
+I_l=P_s/V_1
+Re=(I_l*R*pf)+(I_l*X*sind(acosd(pf)))
+V_r=Re+V_1
+disp(V_r,'Voltage for high voltage side on full load at 0.8 power factor lagging when secondary terminal voltage is 240 volts(in volt)=') \ No newline at end of file
diff --git a/833/CH2/EX2.6/Ex2_6.txt b/833/CH2/EX2.6/Ex2_6.txt
new file mode 100755
index 000000000..dde90ce87
--- /dev/null
+++ b/833/CH2/EX2.6/Ex2_6.txt
@@ -0,0 +1,20 @@
+//Caption:Find voltage for h.v voltage side on full load at 0.8 power factor lagging when secondary terminal voltage is 240 volts
+//Exa:2.6
+clc;
+clear;
+close;
+P_s=100000//Supplied power(in VA)
+V_1=6600//Primary side voltage(in volt)
+V_2=240//Secondary side voltage(in volt)
+f=50//frequency(in hertz)
+I_sh=5//short circuit test current(in A)
+P_sh=109//short circuit test power(in watt)
+V_sh=50//short circuit test voltage(in volt)
+pf=0.8//Power factor
+Z=V_sh/I_sh
+R=P_sh/(I_sh^2)
+X=sqrt(Z^2-R^2)
+I_l=P_s/V_1
+Re=(I_l*R*pf)+(I_l*X*sind(acosd(pf)))
+V_r=Re+V_1
+disp(V_r,'Voltage for high voltage side on full load at 0.8 power factor lagging when secondary terminal voltage is 240 volts(in volt)=') \ No newline at end of file
diff --git a/833/CH2/EX2.6/Result2_6.txt b/833/CH2/EX2.6/Result2_6.txt
new file mode 100755
index 000000000..a2f7358a2
--- /dev/null
+++ b/833/CH2/EX2.6/Result2_6.txt
@@ -0,0 +1,4 @@
+Voltage for high voltage side on full load at 0.8 power factor lagging when secondary terminal voltage is 240 volts(in volt)=
+
+ 6734.6618
+ \ No newline at end of file
diff --git a/833/CH2/EX2.7/Ex2_7.sce b/833/CH2/EX2.7/Ex2_7.sce
new file mode 100755
index 000000000..71e3c17c8
--- /dev/null
+++ b/833/CH2/EX2.7/Ex2_7.sce
@@ -0,0 +1,28 @@
+//Caption: Calculate (a)Z,X,R reffered to h.v side (b)Regulaton on full load at 0.8 power factor lagging (c)Terminal voltage on l.v side on full load at pf=0.8 lagging (d)Efficiency of transformer when current=250A,pf=0.8 lagging is load connected to l.v side and voltage at h.v side is 11000 volts
+//Exa:2.7
+clc;
+clear;
+close;
+P_s=220000//Supplied power (in VA)
+V_1=11000//Primary side voltage(in volt)
+V_2=440//Secondary side voltage(in volt)
+P_i=2200//Iron losses(in watt)
+V=500//voltage applied to high voltage side for open circuit test(in volt)
+P=2000//Wattmeter reading for open circuit test(in watt)
+pf=0.8//Power factor
+I=250//Load current(in A)
+I_fl=P_s/V_1
+r=P/(I_fl^2)
+z=V/I_fl
+x=sqrt(z^2-r^2)
+disp(r,x,z,'(a)Z,X,R(in ohms)=')
+Re=(I_fl*r*pf)+(I_fl*x*sind(acosd(pf)))
+disp(Re,'(b)Regulation on full load on high voltage side(in volts)=')
+Re_1=(Re*V_2)/V_1
+disp(Re_1,'Regulation on full load on low volrage side(in volts)=')
+V_t=V_2-Re_1
+disp(V_t,'(c)Terminal voltage on low voltage side on full load(in volts)=')
+I_c=I*V_2/(V_1)
+W_c=P/(2^2)
+Eff=(V_1*I_c*pf)/((V_1*I_c*pf)+(P_i)+(W_c))*100
+disp(Eff,'(d)Efficiency of transformer(in%)=') \ No newline at end of file
diff --git a/833/CH2/EX2.7/Ex2_7.txt b/833/CH2/EX2.7/Ex2_7.txt
new file mode 100755
index 000000000..71e3c17c8
--- /dev/null
+++ b/833/CH2/EX2.7/Ex2_7.txt
@@ -0,0 +1,28 @@
+//Caption: Calculate (a)Z,X,R reffered to h.v side (b)Regulaton on full load at 0.8 power factor lagging (c)Terminal voltage on l.v side on full load at pf=0.8 lagging (d)Efficiency of transformer when current=250A,pf=0.8 lagging is load connected to l.v side and voltage at h.v side is 11000 volts
+//Exa:2.7
+clc;
+clear;
+close;
+P_s=220000//Supplied power (in VA)
+V_1=11000//Primary side voltage(in volt)
+V_2=440//Secondary side voltage(in volt)
+P_i=2200//Iron losses(in watt)
+V=500//voltage applied to high voltage side for open circuit test(in volt)
+P=2000//Wattmeter reading for open circuit test(in watt)
+pf=0.8//Power factor
+I=250//Load current(in A)
+I_fl=P_s/V_1
+r=P/(I_fl^2)
+z=V/I_fl
+x=sqrt(z^2-r^2)
+disp(r,x,z,'(a)Z,X,R(in ohms)=')
+Re=(I_fl*r*pf)+(I_fl*x*sind(acosd(pf)))
+disp(Re,'(b)Regulation on full load on high voltage side(in volts)=')
+Re_1=(Re*V_2)/V_1
+disp(Re_1,'Regulation on full load on low volrage side(in volts)=')
+V_t=V_2-Re_1
+disp(V_t,'(c)Terminal voltage on low voltage side on full load(in volts)=')
+I_c=I*V_2/(V_1)
+W_c=P/(2^2)
+Eff=(V_1*I_c*pf)/((V_1*I_c*pf)+(P_i)+(W_c))*100
+disp(Eff,'(d)Efficiency of transformer(in%)=') \ No newline at end of file
diff --git a/833/CH2/EX2.7/Result2_7.txt b/833/CH2/EX2.7/Result2_7.txt
new file mode 100755
index 000000000..d95763067
--- /dev/null
+++ b/833/CH2/EX2.7/Result2_7.txt
@@ -0,0 +1,24 @@
+(a)Z,X,R(in ohms)=
+
+ 25.
+
+ 24.494897
+
+ 5.
+
+ (b)Regulation on full load on high voltage side(in volts)=
+
+ 373.93877
+
+ Regulation on full load on low volrage side(in volts)=
+
+ 14.957551
+
+ (c)Terminal voltage on low voltage side on full load(in volts)=
+
+ 425.04245
+
+ (d)Efficiency of transformer(in%)=
+
+ 97.023153
+ \ No newline at end of file
diff --git a/833/CH2/EX2.8/Ex2_8.sce b/833/CH2/EX2.8/Ex2_8.sce
new file mode 100755
index 000000000..cb6cba1f7
--- /dev/null
+++ b/833/CH2/EX2.8/Ex2_8.sce
@@ -0,0 +1,19 @@
+//Caption: Determine (a)Efficiency (b)Regulation at loading conditions
+//Exa:2.8
+clc;
+clear;
+close;
+P_s=10000//Supplied power (in VA)
+V_1=440//Primary voltage (in volts)
+V_2=240//Secondary voltage(in volts)
+f=50//frequency(in hertz)
+I_l=35//Load current(in A)
+V_l=234//Load voltage(in volts)
+W=8500//Wattmeter reading(in watts) connected on 440V side
+P_o=I_l*V_l
+P_i=W
+Eff=P_o/(P_i)*100
+disp(Eff,'(a)Efficiency(in %)=')
+V_d=V_2-V_l
+Re=V_d/(V_2)*100
+disp(Re,'(b)Regulation(in%)=') \ No newline at end of file
diff --git a/833/CH2/EX2.8/Ex2_8.txt b/833/CH2/EX2.8/Ex2_8.txt
new file mode 100755
index 000000000..cb6cba1f7
--- /dev/null
+++ b/833/CH2/EX2.8/Ex2_8.txt
@@ -0,0 +1,19 @@
+//Caption: Determine (a)Efficiency (b)Regulation at loading conditions
+//Exa:2.8
+clc;
+clear;
+close;
+P_s=10000//Supplied power (in VA)
+V_1=440//Primary voltage (in volts)
+V_2=240//Secondary voltage(in volts)
+f=50//frequency(in hertz)
+I_l=35//Load current(in A)
+V_l=234//Load voltage(in volts)
+W=8500//Wattmeter reading(in watts) connected on 440V side
+P_o=I_l*V_l
+P_i=W
+Eff=P_o/(P_i)*100
+disp(Eff,'(a)Efficiency(in %)=')
+V_d=V_2-V_l
+Re=V_d/(V_2)*100
+disp(Re,'(b)Regulation(in%)=') \ No newline at end of file
diff --git a/833/CH2/EX2.8/Result2_8.txt b/833/CH2/EX2.8/Result2_8.txt
new file mode 100755
index 000000000..0d16bae45
--- /dev/null
+++ b/833/CH2/EX2.8/Result2_8.txt
@@ -0,0 +1,8 @@
+(a)Efficiency(in %)=
+
+ 96.352941
+
+ (b)Regulation(in%)=
+
+ 2.5
+ \ No newline at end of file
diff --git a/833/CH2/EX2.9/Ex2_9.sce b/833/CH2/EX2.9/Ex2_9.sce
new file mode 100755
index 000000000..b8a1c3a2f
--- /dev/null
+++ b/833/CH2/EX2.9/Ex2_9.sce
@@ -0,0 +1,24 @@
+//Caption: Find how they will share 750KVA load at 0.8 power factor lagging
+//Exa:2.9
+clc;
+clear;
+close;
+P_s1=500000//Supplied power(in VA) to first transformer
+r_1=0.01//Per unit resistance of first transformer
+x_1=0.05//Per unit reactance of first transformer
+P_s2=250000//Supplied power(in VA) to second transformer
+r_2=0.015//Per unit resistance of second transformer
+x_2=0.04//Per unit reactance of second transformer
+P_l=750000//Load(in VA)
+pf=0.8//Powerfactor lagging
+V_2=400//Secondary voltage of each transformer(in volts)
+Z_1=r_1+(%i*x_1)
+Z_2=((2*r_2)+(2*%i*x_2))
+Z=Z_1+Z_2
+S=P_l*(pf-(%i*(sind(acosd(pf)))))
+S_1=(S*Z_2)/(Z)
+s_1=sqrt(((real(S_1))^2)+((imag(S_1)^2)))
+disp(s_1,'Load on first transformer(in VA)=')
+S_2=(S*Z_1)/(Z)
+s_2=sqrt(((real(S_2))^2)+((imag(S_2)^2)))
+disp(s_2,'Load on second transformer(inVA)=') \ No newline at end of file
diff --git a/833/CH2/EX2.9/Ex2_9.txt b/833/CH2/EX2.9/Ex2_9.txt
new file mode 100755
index 000000000..b8a1c3a2f
--- /dev/null
+++ b/833/CH2/EX2.9/Ex2_9.txt
@@ -0,0 +1,24 @@
+//Caption: Find how they will share 750KVA load at 0.8 power factor lagging
+//Exa:2.9
+clc;
+clear;
+close;
+P_s1=500000//Supplied power(in VA) to first transformer
+r_1=0.01//Per unit resistance of first transformer
+x_1=0.05//Per unit reactance of first transformer
+P_s2=250000//Supplied power(in VA) to second transformer
+r_2=0.015//Per unit resistance of second transformer
+x_2=0.04//Per unit reactance of second transformer
+P_l=750000//Load(in VA)
+pf=0.8//Powerfactor lagging
+V_2=400//Secondary voltage of each transformer(in volts)
+Z_1=r_1+(%i*x_1)
+Z_2=((2*r_2)+(2*%i*x_2))
+Z=Z_1+Z_2
+S=P_l*(pf-(%i*(sind(acosd(pf)))))
+S_1=(S*Z_2)/(Z)
+s_1=sqrt(((real(S_1))^2)+((imag(S_1)^2)))
+disp(s_1,'Load on first transformer(in VA)=')
+S_2=(S*Z_1)/(Z)
+s_2=sqrt(((real(S_2))^2)+((imag(S_2)^2)))
+disp(s_2,'Load on second transformer(inVA)=') \ No newline at end of file
diff --git a/833/CH2/EX2.9/Result2_9.txt b/833/CH2/EX2.9/Result2_9.txt
new file mode 100755
index 000000000..c68a7a797
--- /dev/null
+++ b/833/CH2/EX2.9/Result2_9.txt
@@ -0,0 +1,8 @@
+Load on first transformer(in VA)=
+
+ 471125.74
+
+ Load on second transformer(inVA)=
+
+ 281165.53
+ \ No newline at end of file