summaryrefslogtreecommitdiff
path: root/764/CH12/EX12.9.b
diff options
context:
space:
mode:
Diffstat (limited to '764/CH12/EX12.9.b')
-rwxr-xr-x764/CH12/EX12.9.b/result12_9.txt81
-rwxr-xr-x764/CH12/EX12.9.b/solution12_9.sce34
2 files changed, 115 insertions, 0 deletions
diff --git a/764/CH12/EX12.9.b/result12_9.txt b/764/CH12/EX12.9.b/result12_9.txt
new file mode 100755
index 000000000..6cf2d5555
--- /dev/null
+++ b/764/CH12/EX12.9.b/result12_9.txt
@@ -0,0 +1,81 @@
+-->//(Brakes) Example 12.9
+
+-->//Face width of the friction lining w (mm)
+
+-->w = 50
+ w =
+
+ 50.
+
+-->//Maximum intensity of normal pressure pmax (N/mm2)
+
+-->pmax = 1
+ pmax =
+
+ 1.
+
+-->//Coefficient of friction mu
+
+-->mu = 0.3
+ mu =
+
+ 0.3
+
+-->//Radius of the drum R (mm)
+
+-->R = 250
+ R =
+
+ 250.
+
+-->//All angles are taken from the same reference
+
+-->//Angles of the shoe theta1 and theta2
+
+-->theta1 = 15
+ theta1 =
+
+ 15.
+
+-->theta2 = 75
+ theta2 =
+
+ 75.
+
+-->//Maximum normal pressure occurs at angle fi (deg)
+
+-->if (theta2 > 90)
+--> fi = 90
+-->else
+--> fi = theta2
+ fi =
+
+ 75.
+-->end
+
+-->//Distance of the force from the horizontal centerline d1 (mm)
+
+-->d1 = 200
+ d1 =
+
+ 200.
+
+-->//The distance of the pivot from the axis of the brake drum h (mm)
+
+-->h= 200
+ h =
+
+ 200.
+
+-->//Distance of the pivot from the vertical centerline d2 (mm)
+
+-->d2 = 50
+ d2 =
+
+ 50.
+
+
+Actuating force(P) = 5025.457606 N
+
+Torque absorbing capacity of the brake with 4 shoes(Mt) = 2181614.276244 N-mm
+ \ No newline at end of file
diff --git a/764/CH12/EX12.9.b/solution12_9.sce b/764/CH12/EX12.9.b/solution12_9.sce
new file mode 100755
index 000000000..f219618a5
--- /dev/null
+++ b/764/CH12/EX12.9.b/solution12_9.sce
@@ -0,0 +1,34 @@
+
+//Obtain path of solution file
+path = get_absolute_file_path('solution12_9.sce')
+//Obtain path of data file
+datapath = path + filesep() + 'data12_9.sci'
+//Clear all
+clc
+//Execute the data file
+exec(datapath)
+//For RIGHT SHOE
+//Calculate the moment of the frictional force about the pivot Mf (N-mm)
+Mf = mu * pmax * R * w * (4 * R * (cosd(theta1) - cosd(theta2)) - h * (cosd(2 * theta1) - cosd(2 * theta2)))/(4 * sind(fi))
+//Calculate the moment of the normal force about the pivot Mn (N-mm)
+Mn = pmax * R * w * h * (2 * (theta2 - theta1) * (%pi/180) - (sind(2 * theta2) - sind(2 * theta1)))/(4 * sind(fi))
+//Calculate the actuating force P (N)
+P = (Mn - Mf)/d1
+//Calculate the torque absorbing capacity Mtr
+Mtr = mu * R^2 * pmax * w * (cosd(theta1) - cosd(theta2))/sind(fi)
+//For LEFT SHOE
+//Assume the maximum intensity of pressure for LEFT SHOE to be 1 N/mm2 plmax
+plmax = 1
+//Calculate the moment of the frictional force about the pivot Mfl (N-mm)
+Mlf = Mf * plmax/pmax
+//Calculate the moment of the normal force about the pivot Mnl (N-mm)
+Mln = Mn * plmax/pmax
+//Calculate the actual maximum intensity of pressure plmax (N/mm2)
+plmax = P * d1/(Mlf + Mln)
+//Calculate the torque absorbing capacity Mtl (N-mm)
+Mtl = Mtr * (plmax/pmax)
+//Calculate the total torque absorbing capacity of the brake Mt (N-mm)
+Mt = Mtr + Mtl
+//Print results
+printf("\nActuating force(P) = %f N\n",P)
+printf("\nTorque absorbing capacity of the brake with 4 shoes(Mt) = %f N-mm\n",2*Mt)