summaryrefslogtreecommitdiff
path: root/73/CH3/EX3.6/Example3_6.sci
diff options
context:
space:
mode:
Diffstat (limited to '73/CH3/EX3.6/Example3_6.sci')
-rwxr-xr-x73/CH3/EX3.6/Example3_6.sci41
1 files changed, 41 insertions, 0 deletions
diff --git a/73/CH3/EX3.6/Example3_6.sci b/73/CH3/EX3.6/Example3_6.sci
new file mode 100755
index 000000000..63009dba5
--- /dev/null
+++ b/73/CH3/EX3.6/Example3_6.sci
@@ -0,0 +1,41 @@
+//Chapter 3_Semoconductor Devices Fundamentals
+//Caption : Bipolar Transistor Parameters
+//Example3.6: Determine Cu,Ccs,Gm,C1,R1,R0 and Ru for a bipolar transisitor. Given : Ic=0.2 mA, Vcb=10V,Vcs=15V,Cuo=0.25pF,Cje=1 pF,Ccso=1.5pF,Bo=2000,Tf=0.3ns, n=2*10^-4 and Vo=0.55V for all junctions.
+// Solution:
+clear;
+clc;
+Cuo=0.25;// collector-base depletion region capacitance in pico Farad(pF) for zero bias
+Ccso=1.5 ;// collector-substrate junction capacitance in pico Farad(pF) for zero bias
+q=1.6*10^-19 ;//electron charge in coulomb
+Ic=0.2 ;//collector current in ampere(A)
+k=8.6*10^-5;//in eV/K, where 1eV=1.6*10^-19
+T=300;//absolute temperature in kelvin(K)
+Vcb=10 ;//forward bias on the junction in volt(v)
+Vcs=15 ;//collector-substrate bias in volt(V)
+Cje=1 ;//depletion region capacitance in pico Farad(pF)
+Bo=200;//small signal current gain
+Tf=0.3;//transit time in forward direction in nano seconds(nS)
+n=2*10^-4;// proportionality constant for Ro and gm
+Vo=0.55;// bias voltage in volt(V)
+Cu=Cuo/sqrt(1+(Vcb/Vo));// collector-base capacitance
+disp('Cu is:')
+disp('pF',Cu)
+Ccs=Ccso/sqrt(1+(Vcs/Vo));// collector-substrate capacitance
+disp('Ccs is:')
+disp('pF',Ccs)
+gm=q*Ic/(k*T*1.6*10^-19);// since k is in eV so converting it in Coulomb/Kelvin
+disp('gm is:')// transconductance of the bipolar transistor here
+disp('mA/V',gm)
+Cb=Tf*gm;//diffusion capacitance in pico Farad(pF)
+C1=Cb+Cje;//small signal capacitance of bipolar transistor
+disp("C1 is:")
+disp("pF",C1)
+R1=Bo/gm;// small signal input resistance of bipolar transistor
+disp('R1 is:')
+disp('kilo Ohm',R1)
+Ro=1/(n*gm);//small signal output resistance
+disp('R0 is')
+disp('kilo Ohm',Ro)
+Ru=10*Bo*Ro/10^3;//collector-base resistance
+disp('Ru is:')
+disp('Mega Ohm',Ru) \ No newline at end of file