diff options
Diffstat (limited to '68/CH8/EX8.1/ex1.sce')
-rwxr-xr-x | 68/CH8/EX8.1/ex1.sce | 23 |
1 files changed, 23 insertions, 0 deletions
diff --git a/68/CH8/EX8.1/ex1.sce b/68/CH8/EX8.1/ex1.sce new file mode 100755 index 000000000..adc66e534 --- /dev/null +++ b/68/CH8/EX8.1/ex1.sce @@ -0,0 +1,23 @@ +// Example 8.1: Analysis of op amp connected in an inverting configuration
+// By inspection we can write down the expressions for A, B , closed loop gain , the input resistance and the output resistance
+u=10^4; // (ohm)
+R_id=100*10^3; // (ohm)
+r_o=1000; // (ohm)
+R_L=2000; // (ohm)
+R_1=1000; // (ohm)
+R_2=10^6; // (ohm)
+R_S=10000; // (ohm)
+A=u*(R_L*(R_1+R_2)/(R_L+R_1+R_2))*R_id/(((R_L*(R_1+R_2))/(R_L+R_1+R_2)+r_o)*(R_id+R_S+(R_1*R_2)/(R_1+R_2)))
+disp(A,"Voltage gain without feedback (V/V)")
+B=R_1/(R_1+R_2); // Beta value
+disp(B, "Beta value ")
+A_f=A/(1+A*B);
+disp(A_f,"Voltage gain with feedback (V/V)")
+R_i=R_S+R_id+(R_1*R_2/(R_1+R_2))// Input resistance of the A circuit in fig 8.12a of textbook
+R_if=R_i*7;
+R_in=R_if-R_S;
+disp(R_in,"Input resistance (ohm)")
+R_o=1/(1/r_o+1/R_L+1/(R_1+R_2));
+R_of=R_o/(1+A*B);
+R_out=R_of*R_L/(R_L-R_of);
+disp(R_out,"the output resistance (ohm)")
\ No newline at end of file |