summaryrefslogtreecommitdiff
path: root/635/CH14
diff options
context:
space:
mode:
Diffstat (limited to '635/CH14')
-rwxr-xr-x635/CH14/EX14.1/Ch14Ex1.sci14
-rwxr-xr-x635/CH14/EX14.2/Ch14Ex2.sci10
-rwxr-xr-x635/CH14/EX14.3/Ch14Ex3.sci12
-rwxr-xr-x635/CH14/EX14.4/Ch14Ex4.sci16
-rwxr-xr-x635/CH14/EX14.5/Ch14Ex5.sci18
-rwxr-xr-x635/CH14/EX14.6/Ch14Ex6.sci25
6 files changed, 95 insertions, 0 deletions
diff --git a/635/CH14/EX14.1/Ch14Ex1.sci b/635/CH14/EX14.1/Ch14Ex1.sci
new file mode 100755
index 000000000..4a0d4358d
--- /dev/null
+++ b/635/CH14/EX14.1/Ch14Ex1.sci
@@ -0,0 +1,14 @@
+// Scilab Code Ex14.1 Polarization of water molecule: Page-456 (2010)
+NA = 6.023e+23; // Avogadro's number
+p = 6e-030; // Dipole moment of water molecule, C-m
+r = 1e-03; // Radius of water molecule, m
+M = 18e-03; // Molecular weight of water, kg
+d = 1e+03; // Density of water, kg per metre cube
+V = M/d; // Volume of water, metre cube
+// Now M/d metre cube volume will contain NA = 6.023e+023 water molecules, so that 4*%pi/3*(r^3) metre cube volume will contain
+N = NA*d*4*%pi*r^3/(M*3); // Number of water molecules per metre cube
+P = N*p; // Polarization of water molecules, coulomb per metre square
+printf("\nThe polarization of water molecules = %3.1e coulomb per metre square", P);
+// Result
+// The polarization of water molecules = 8.4e-010 coulomb per metre square
+
diff --git a/635/CH14/EX14.2/Ch14Ex2.sci b/635/CH14/EX14.2/Ch14Ex2.sci
new file mode 100755
index 000000000..c55c48c23
--- /dev/null
+++ b/635/CH14/EX14.2/Ch14Ex2.sci
@@ -0,0 +1,10 @@
+// Scilab Code Ex14.2 Calculating dielectric constant from electric polarizability of the atom: Page-464 (2010)
+alpha_Kr = 2.18e-040; // Electric polarizability of the Kr-atom, farad-metre square
+NA = 6.023e+023; // Avogadro's number
+epsilon_0 = 8.85e-012; // Electrical permittivity of free space, coulomb square per newton per metre square
+N = NA/(22.4e-03); // Number of Kr atoms per metre cube
+epsilon_r = N*alpha_Kr/epsilon_0 + 1; // Relative electrical permittivity of Kr specimen
+printf("\nThe diectric constant of Kr specimen = %7.5f", epsilon_r);
+// Result
+// The diectric constant of Kr specimen = 1.00066
+
diff --git a/635/CH14/EX14.3/Ch14Ex3.sci b/635/CH14/EX14.3/Ch14Ex3.sci
new file mode 100755
index 000000000..cc88de833
--- /dev/null
+++ b/635/CH14/EX14.3/Ch14Ex3.sci
@@ -0,0 +1,12 @@
+// Scilab Code Ex14.3 Calculating electric polarizability of a molecule from its susceptibility: Page-464 (2010)
+NA = 6.023e+023; // Avogadro's number
+epsilon_0 = 8.85e-012; // Electrical permittivity of free space, coulomb square per newton per metre
+chi = 0.985e-03; // Electrical susceptibility of carbon-dioxide molecule
+rho = 1.977; // Density of carbon-dioxide, kg per metre cube
+M = 44e-03; // Molecular weight of CO2, kg
+N = NA*rho/M; // Number of molecules per unit volume, per metre cube
+alpha = epsilon_0*chi/N; // Total electric polarizability of carbon-dioxide, farad-metre square
+printf("\nThe total electric polarizability of carbon-dioxide = %4.2e farad-metre square", alpha);
+// Result
+// The total electric polarizability of carbon-dioxide = 3.22e-040 farad-metre square
+
diff --git a/635/CH14/EX14.4/Ch14Ex4.sci b/635/CH14/EX14.4/Ch14Ex4.sci
new file mode 100755
index 000000000..1f1313369
--- /dev/null
+++ b/635/CH14/EX14.4/Ch14Ex4.sci
@@ -0,0 +1,16 @@
+// Scilab Code Ex14.4 Calculating electric polarizability of Oxygen atom: Page-465 (2010)
+e = 1.602e-019; // Charge on an electron, coulomb
+p = 0.5e-022; // Dipole moment of oxygen atom, C-m
+d = 4e-017; // Distnace of the centre of negative charge cloud from the nucleus, m
+epsilon_0 = 8.85e-012; // Electrical permittivity of free space, coulomb square per newton per metre
+// In equilibrium, Coulomb interaction = Lorentz force
+// i.e. 8*e*E = (8*e)*(8*e)/(4*%pi*epsilon_0*d^2)
+// Solving for E
+E = 8*e/(4*%pi*epsilon_0*d^2); // The strength of local electric field, volt per metre
+// As p = alpha*E, solving for alpha
+disp(E);
+alpha = p/E; // Atomic polarizability of oxygen, farad-metre square
+printf("\nThe atomic polarizability of oxygen = %3.1e farad-metre square", alpha);
+// Result
+// The atomic polarizability of oxygen = 6.9e-048 farad-metre square
+
diff --git a/635/CH14/EX14.5/Ch14Ex5.sci b/635/CH14/EX14.5/Ch14Ex5.sci
new file mode 100755
index 000000000..1fe544771
--- /dev/null
+++ b/635/CH14/EX14.5/Ch14Ex5.sci
@@ -0,0 +1,18 @@
+// Scilab Code Ex14.5 Dipolar polarization of HCl molecule: Page-470 (2010)
+k = 1.38e-023; // Boltzmann constant, J/mol/K
+T = 300; // Temperature of the HCl vapour, kelvin
+N = 1e+027; // Number of HCL molecuels per unit volume, per metre cube
+E = 1e+06; // Electric field strength to which the HCL vapour is subjected, volt/m
+p = 3.46e-030; // The dipole moment of HCl molecule,C-m
+alpha_d = p^2/(3*k*T); // Dipolar polarizability of HCl molecule, farad-metre square
+// As P = N*p = N*alpha_d*E
+P = N*alpha_d*E; // Orientational or Dipolar polarization of HCl molecule, coulomb per metre square
+E_M = p*E; // Magnetic energy stored in the dipole-field system, joule
+E_Th = k*T; // Thermal energy of the HCl molecule, joule
+a = E_M/E_Th; // Ratio of magnetic energy to the thermal energy
+printf("\nThe orientational polarization of molecules in HCl vapour = %4.2e coulomb per metre square", P);
+printf("\nThe ratio of magnetic energy to the thermal energy = %f << 1", a);
+// Result
+// The orientational polarization of molecules in HCl vapour = 9.64e-007 coulomb per metre square
+// The ratio of magnetic energy to the thermal energy = 0.000836 << 1
+
diff --git a/635/CH14/EX14.6/Ch14Ex6.sci b/635/CH14/EX14.6/Ch14Ex6.sci
new file mode 100755
index 000000000..c32a401e1
--- /dev/null
+++ b/635/CH14/EX14.6/Ch14Ex6.sci
@@ -0,0 +1,25 @@
+// Scilab Code Ex14.6 Effect of molecular deformation on polarizability: Page-471 (2010)
+alpha_309 = 2.42e-039; // Polarizability of ammonia molecule at 309 K, farad-metre square
+alpha_448 = 1.74e-039; // Polarizability of ammonia molecule at 448 K, farad-metre square
+k = 1.38e-023; // Boltzmann constant, J/mol/K
+T1 = 309; // First temperature of the experiment, kelvin
+T2 = 448; // Second temperature of the experiment, kelvin
+// As alpha = alpha_i + alpha_d = alpha_i + p^2/(3*k*T) = alpha_i + bta/T
+// where bta = p^2/(3*k)
+// Thus alpha_309 = alpha_i + bta/309 and alpha_448 = alpha_i + bta/448
+// Solving for bta
+// bta(1/309-1/448) = alpha_309 - alpha_448
+bta = poly(0, "bta");
+bta = roots(bta*(1/309 - 1/448) - alpha_309 + alpha_448); // bta = p^2/(3*k), farad-kelvin metre square
+// Solving for alpha_i
+alpha_i = alpha_309 - bta/309; // Polarizability due to permanent dipole moment, farad-metre square
+// Polarizability due to deformation of molecules = bta/T, bta = p^2/(3*k)
+alpha_d_309 = bta/T1; // Orientational polarizability at 309 K, farad-metre square
+alpha_d_448 = bta/T2; // Orientational polarizability at 448 K, farad-metre square
+printf("\nThe polarizability due to permanent dipole moment = %4.1e farad-metre square", alpha_i);
+printf("\nThe orientational polarization of ammonia at 309 K = %4.2e farad-metre square", alpha_d_309);
+printf("\nThe orientational polarization of ammonia at 448 K = %4.2e farad-metre square", alpha_d_448);
+// Result
+// The polarizability due to permanent dipole moment = 2.3e-040 farad-metre square
+// The orientational polarization of ammonia at 309 K = 2.19e-039 farad-metre square
+// The orientational polarization of ammonia at 448 K = 1.51e-039 farad-metre square \ No newline at end of file