summaryrefslogtreecommitdiff
path: root/629/CH15
diff options
context:
space:
mode:
Diffstat (limited to '629/CH15')
-rw-r--r--629/CH15/EX15.1/ex15_1.txt3
-rw-r--r--629/CH15/EX15.1/example15_1.sce15
-rw-r--r--629/CH15/EX15.2/ex15_2.txt3
-rw-r--r--629/CH15/EX15.2/example15_2.sce23
-rw-r--r--629/CH15/EX15.3/ex15_3.txt3
-rw-r--r--629/CH15/EX15.3/example15_3.sce11
-rw-r--r--629/CH15/EX15.4/ex15_4.txt4
-rw-r--r--629/CH15/EX15.4/example15_4.sce22
-rw-r--r--629/CH15/EX15.5/ex15_5.txt3
-rw-r--r--629/CH15/EX15.5/example15_5.sce12
10 files changed, 99 insertions, 0 deletions
diff --git a/629/CH15/EX15.1/ex15_1.txt b/629/CH15/EX15.1/ex15_1.txt
new file mode 100644
index 000000000..c13fb31c8
--- /dev/null
+++ b/629/CH15/EX15.1/ex15_1.txt
@@ -0,0 +1,3 @@
+
+The maximum depth assured of having laminar flow = 0.062 ft.
+ \ No newline at end of file
diff --git a/629/CH15/EX15.1/example15_1.sce b/629/CH15/EX15.1/example15_1.sce
new file mode 100644
index 000000000..6e82e1160
--- /dev/null
+++ b/629/CH15/EX15.1/example15_1.sce
@@ -0,0 +1,15 @@
+clear
+clc
+//Example 15.1 CONDITIONS FOR LAMINAR OPEN-CHANNEL FLOW
+V=0.1; //velocity [ft/s]
+B=10; //width[ft]
+y=6; //depth[ft]
+Rh=B*y/(B+2*y) //[ft]
+v=1.22*10^-5; //[ft^2]
+Re=V*Rh/v //Reynolds number
+//Re>500, flow is turbulent
+//Depth, ymax for Re=500
+Re1=500;
+Rh1=Re1*v/V //[ft]
+ymax=B*Rh1/(B-2*Rh1) //[ft]
+printf("\nThe maximum depth assured of having laminar flow = %.3f ft.\n",ymax) \ No newline at end of file
diff --git a/629/CH15/EX15.2/ex15_2.txt b/629/CH15/EX15.2/ex15_2.txt
new file mode 100644
index 000000000..e5941e9b4
--- /dev/null
+++ b/629/CH15/EX15.2/ex15_2.txt
@@ -0,0 +1,3 @@
+
+The discharge of water is 503 cfs.
+ \ No newline at end of file
diff --git a/629/CH15/EX15.2/example15_2.sce b/629/CH15/EX15.2/example15_2.sce
new file mode 100644
index 000000000..28ca05182
--- /dev/null
+++ b/629/CH15/EX15.2/example15_2.sce
@@ -0,0 +1,23 @@
+clear
+clc
+//Example 15.2 ESTIMATING Q FOR UNIFORM FLOW USING DARCY-WEISBACH EQUATION
+g=32.2; //[ft/s^2]
+l=10; //width[ft]
+y=6; //depth [ft]
+A=l*y //area[ft^2]
+So=0.0016; //slope of the channel
+v=1.2*10^-5; //[ft^2/s]
+Rh=l*y/(l+2*y); //[ft]
+ks=0.005; //[ft](Assume)
+Rr=ks/(4*Rh) //relative roughness
+//Estimating f from Rr, using Moody diagram
+f=0.016;
+//first iteration for V
+V=sqrt(8*g*Rh*So/f) //[ft/s]
+//Recalculate Re
+Re=V*4*Rh/v
+//Using Rr,new Re, read
+f1=0.016;
+//f1=f,meets reasonable convergence criterion for V
+Q=V*A //discharge [cfs]
+printf("\nThe discharge of water is %.f cfs.\n",Q) \ No newline at end of file
diff --git a/629/CH15/EX15.3/ex15_3.txt b/629/CH15/EX15.3/ex15_3.txt
new file mode 100644
index 000000000..5ab75c576
--- /dev/null
+++ b/629/CH15/EX15.3/ex15_3.txt
@@ -0,0 +1,3 @@
+
+The value of resistance coefficient = 0.130
+ \ No newline at end of file
diff --git a/629/CH15/EX15.3/example15_3.sce b/629/CH15/EX15.3/example15_3.sce
new file mode 100644
index 000000000..957d7c74c
--- /dev/null
+++ b/629/CH15/EX15.3/example15_3.sce
@@ -0,0 +1,11 @@
+clear
+clc
+//Example 15.3 RESISTANCE COEFFICIENT FOR BOULDERS
+l=100; //width[ft]
+y=4.3; //depth[ft]
+d84=0.72; //[ft]
+//for wide channel, take Rh=b
+Rh=y
+//Resistance coefficient
+f=(1.2+(2.03*(log10(Rh/d84))))^-2
+printf("\nThe value of resistance coefficient = %.3f\n",f) \ No newline at end of file
diff --git a/629/CH15/EX15.4/ex15_4.txt b/629/CH15/EX15.4/ex15_4.txt
new file mode 100644
index 000000000..a7aed98d8
--- /dev/null
+++ b/629/CH15/EX15.4/ex15_4.txt
@@ -0,0 +1,4 @@
+
+The discharge in the channel, Q = 2176 cfs.
+
+The numerical value of Mannings n for this channel = 0.0426 \ No newline at end of file
diff --git a/629/CH15/EX15.4/example15_4.sce b/629/CH15/EX15.4/example15_4.sce
new file mode 100644
index 000000000..3a7096919
--- /dev/null
+++ b/629/CH15/EX15.4/example15_4.sce
@@ -0,0 +1,22 @@
+clear
+clc
+//Example 15.4 CALCULATING DISCHARGE AND MANNING’S n USING CHEZY EQUATION
+//To find Approx Value
+function [A]= approx (V,n)
+ A= round(V*10^n)/10^n; //V-Value, n-to what place
+ funcprot (0)
+endfunction
+g=32.2; //[ft/s^2]
+l=100; //width[ft]
+y=4.3; //depth[ft]
+A=l*y //area[ft^2]
+//Estimate Rh to be y
+Rh=y
+f=0.13; //friction factor
+So=0.003; //slope
+V=approx(sqrt(8*g*Rh*So/f),2) //velocity[ft/s]
+Q=approx(V*A,0) //discharge[cfs]
+printf("\nThe discharge in the channel, Q = %.f cfs.\n",Q)
+//Manning's n
+n=1.49*A*Rh^(2/3)*So^(1/2)/Q
+printf("\nThe numerical value of Mannings n for this channel = %.4f\n",n) \ No newline at end of file
diff --git a/629/CH15/EX15.5/ex15_5.txt b/629/CH15/EX15.5/ex15_5.txt
new file mode 100644
index 000000000..1f304f358
--- /dev/null
+++ b/629/CH15/EX15.5/ex15_5.txt
@@ -0,0 +1,3 @@
+
+The discharge in the concrete channel = 465 cfs.
+ \ No newline at end of file
diff --git a/629/CH15/EX15.5/example15_5.sce b/629/CH15/EX15.5/example15_5.sce
new file mode 100644
index 000000000..f9add62ed
--- /dev/null
+++ b/629/CH15/EX15.5/example15_5.sce
@@ -0,0 +1,12 @@
+clear
+clc
+//Example 15.5 DISCHARGE USING CHEZY EQUATION
+n=0.015;
+l=10; //width[ft]
+y=6; //depth[ft]
+Rh=l*y/(l+2*y)
+So=0.0016; //channel slope
+A=l*y //area[ft^2]
+//Discharge
+Q=1.49*A*Rh^(2/3)*So^(1/2)/n //[cfs]
+printf("\nThe discharge in the concrete channel = %.f cfs.\n",Q) \ No newline at end of file