summaryrefslogtreecommitdiff
path: root/587/CH14/EX14.11/example14_11.sce
diff options
context:
space:
mode:
Diffstat (limited to '587/CH14/EX14.11/example14_11.sce')
-rwxr-xr-x587/CH14/EX14.11/example14_11.sce30
1 files changed, 30 insertions, 0 deletions
diff --git a/587/CH14/EX14.11/example14_11.sce b/587/CH14/EX14.11/example14_11.sce
new file mode 100755
index 000000000..7d9678fe7
--- /dev/null
+++ b/587/CH14/EX14.11/example14_11.sce
@@ -0,0 +1,30 @@
+clear;
+clc;
+
+//Example14.11[Analogy between Heat and Mass Transfer]
+//Given:-
+//Napthalene is species A and air is species B
+M_A=128.2;//Molar Mass of A[kg/kmol]
+M_air=29;//Molar mass of B[kg/kmol]
+P=101325;//Pressure of Air[Pa]
+T=298;//Temperature[K]
+D_AB=0.61*10^(-5);//[m^2/s]
+v=2;//Stream velocity[m/s]
+rho=1.184;//Density of air[kg/m^3]
+Cp=1007;//Specific Heat[J/kg.K]
+a=2.141*10^(-5);//Absorptivity[m^2/s]
+w_inf=0;//Mass fraction of napthalene at free stream conditions
+P_As=11;//Vapor Pressure of Napthalene at surface[Pa]
+mA=12*10^(-3);//Mass of napthalene sublimated[kg]
+delta_t=15*60;//time of sublimation[s]
+As=0.3;//surface area of the body[m^2]
+//Solution:-
+w_As=(P_As/P)*(M_A/M_air);
+disp(w_As,"Mass fraction at the surface is")
+m_evap=mA/delta_t;//[kg/s]
+disp("kg/s",m_evap,"The rate of evaporation of napthalene is")
+h_mass=m_evap/(rho*As*(w_As-w_inf));
+disp("m/s",h_mass,"The mass convection coefficient is")
+//Using analogy between heat and mass transfer
+h_heat=rho*Cp*h_mass*((a/D_AB)^(2/3));//[W/m^2.degree Celcius]
+disp("W/m^2.degree Celcius",round(h_heat),"The average heat transfer coefficient is")