summaryrefslogtreecommitdiff
path: root/587/CH13
diff options
context:
space:
mode:
Diffstat (limited to '587/CH13')
-rwxr-xr-x587/CH13/EX13.1/example13_1.sce18
-rwxr-xr-x587/CH13/EX13.10/example13_10.sce42
-rwxr-xr-x587/CH13/EX13.11/example13_11.sce11
-rwxr-xr-x587/CH13/EX13.12/example13_12.sce11
-rwxr-xr-x587/CH13/EX13.13/example13_13.sce19
-rwxr-xr-x587/CH13/EX13.14/example13_14.sce24
-rwxr-xr-x587/CH13/EX13.15/example13_15.sce17
-rwxr-xr-x587/CH13/EX13.2/example13_2.sce14
-rwxr-xr-x587/CH13/EX13.3/example13_3.sce11
-rwxr-xr-x587/CH13/EX13.5/example13_5.sce15
-rwxr-xr-x587/CH13/EX13.6/example13_6.sce18
-rwxr-xr-x587/CH13/EX13.7/example13_7.sce10
-rwxr-xr-x587/CH13/EX13.8/example13_8.sce30
-rwxr-xr-x587/CH13/EX13.9/example13_9.sce15
14 files changed, 255 insertions, 0 deletions
diff --git a/587/CH13/EX13.1/example13_1.sce b/587/CH13/EX13.1/example13_1.sce
new file mode 100755
index 000000000..23dc9c93b
--- /dev/null
+++ b/587/CH13/EX13.1/example13_1.sce
@@ -0,0 +1,18 @@
+clear;
+clc;
+
+//Example13.1[View Factors Associated with two Concentric Spheres]
+//Solution:-
+//The outer surface of the smaller sphere and inner surface of the larger sphere form a two surface enclosure
+N=2;
+disp("View Factors",N^2,"This enclosure involves ")
+x=(1/2)*N*(N-1);
+disp("view factor directly",x,"W need to determine only")
+F11=0;
+F12=1;
+disp("The Two view Factors")
+disp(F11,"Since no radiation leaving surface 1 strikes itself..... F11=")
+disp(F12,"Since all radiation leaving surface 1 strikes surface 2 F12=")
+disp("F12= ((r1/r2)^2)")
+disp("F22= 1-((r1/r2)^2)")
+disp("where r1 and r2 are radius of surface 1 and surface 2") \ No newline at end of file
diff --git a/587/CH13/EX13.10/example13_10.sce b/587/CH13/EX13.10/example13_10.sce
new file mode 100755
index 000000000..5b2b8f9e9
--- /dev/null
+++ b/587/CH13/EX13.10/example13_10.sce
@@ -0,0 +1,42 @@
+clear;
+clc;
+
+//Example13.10[Heat Transfer through a Tubular Solar Collector]
+k=0.02588;//[W/m.degree Celcius]
+Pr1=0.7282,Pr2=0.7255;//Prandtl no
+nu1=1.608*(10^(-5)),nu2=1.702*10^(-5);//[m^2/s]
+T1=20,T2=40;//[degree Celcius]
+Tavg=((T1+T2)/2)+273;//[K]
+Do=0.1,L=1;//Dimensions of glass tube[m]
+Di=0.05;//Inner diameter of tube[m]
+Q_glass=30;//Rate of heat transfer from the outer surface of the glass cover[W]
+g=9.81;//[m^2/s]
+eo=0.9,ei=0.95;//Emissivity
+//Solution:-
+Ao=%pi*Do*L;//Heat transfer surface area of the glass cover[m^2]
+disp(Ao,Tavg)
+Ra_Do=g*Tavg*(T2-T1)*(Do^3)*Pr1/(nu1);
+disp(Ra_Do,"The Rayleigh number is")
+Nu=((0.6+((0.387*(Ra_Do^(1/6)))/((1+((0.559/Pr1)^(9/16)))^(8/27))))^2);
+disp(Nu,"The nusselt number is")
+ho=k*Nu/Do;//[W/m^2.degree Celcius]
+Qo_conv=ho*Ao*(T2-T1);//[W]
+Qo_rad=eo*5.67*10^(-8)*Ao*(((T2+273)^4)-((T1+273)^4));//[W]
+Qo_total=Qo_conv+Qo_rad;//[W]
+disp("W",Qo_total,"The total rate of heat loss from the glass cover
+Lc=(Do-Di)/2;//The characteristic length
+Ai=%pi*Di*L;//[m^2]
+//Assuming
+T_tube=54,T_cover=26;//Temperature of tube and glass cover[degree Celcius]
+T_avg=((T_tube+T_cover)/2)+273;//[K]
+Ra_L=g*T_avg*(T_tube-T_cover)*(Lc^3)*Pr2/(nu2);
+disp(Ra_L,"The Rayleigh number in this case is")
+F_cyl=((log(Do/Di))^4)/((Lc^3)*(((Di^(-3/5))+(Do^(-3/5)))^5));
+k_eff=0.386*k*((Pr2/(0.861+Pr2))^(1/4))*((F_cyl*Ra_L)^(1/4));
+disp("W/m.degree Celcius",k_eff,"The effective thermal conductivity is")
+QL_conv=2*%pi*k_eff*(T_tube-T_cover)/(log(Do/Di));
+disp("W",QL_conv,"The rate of heat transfer between the cylinders by convection is")
+QL_rad=((5.67*10^(-8))*Ai*(((T_tube+273)^4)-((T_cover+273)^4)))/((1/ei)+(((1-eo)/eo)*(Di/Do)));
+disp("W",QL_rad,"The radiation rate of heat transfer is")
+QL_total=QL_conv+QL_rad;//[W]
+disp("W",QL_total,"The total rate of heat loss from the glass cover is") \ No newline at end of file
diff --git a/587/CH13/EX13.11/example13_11.sce b/587/CH13/EX13.11/example13_11.sce
new file mode 100755
index 000000000..16b12ad01
--- /dev/null
+++ b/587/CH13/EX13.11/example13_11.sce
@@ -0,0 +1,11 @@
+clear;
+clc;
+
+//Example13.11[Radiation Shields]
+//given:-
+e=0.1;//Emissivity of aluminium sheet
+T1=800,T2=500;//Temperatures of two parallel plates[K]
+e1=0.2,e2=0.7;//Emissivities of plates
+//So9lution:-
+q12=((5.67*10^(-8))*((T1^4)-(T2^4)))/((1/e1)+(1/e2)-1+(1/e)+(1/e)-1);//[W/m^2]
+disp("W/m^2",round(q12),"Radiation Heat Transfer")
diff --git a/587/CH13/EX13.12/example13_12.sce b/587/CH13/EX13.12/example13_12.sce
new file mode 100755
index 000000000..f4bdc35c0
--- /dev/null
+++ b/587/CH13/EX13.12/example13_12.sce
@@ -0,0 +1,11 @@
+clear;
+clc;
+
+//Example13.12[Radiation Effect on Temperature Measurements]
+//Given:-
+Tw=400,Tth=650;//Temperature of duct wall and hota air flowing in it[K]
+e=0.6;//emissivity
+h=80;//Heat transfer coefficient[W/m^2.K]
+//Solution:-
+Tf=Tth+((e*5.67*10^(-8)*((Tth^4)-(Tw^4)))/h);//[K]
+disp("K",round(Tf),"The temperature of actual air is")
diff --git a/587/CH13/EX13.13/example13_13.sce b/587/CH13/EX13.13/example13_13.sce
new file mode 100755
index 000000000..058aac981
--- /dev/null
+++ b/587/CH13/EX13.13/example13_13.sce
@@ -0,0 +1,19 @@
+clear;
+clc;
+
+//Example13.13[Effective Emissivity of Combustion Gases]
+d=5,H=5;//Diameter and height of cylindrical furnace[m]
+T=1200;//Temp of gases[K]
+P=2;//Pressure[atm]
+yN2=0.8,yH2O=0.08,yO2=0.07,yCO2=0.05;//Volumetric Composition
+//Solution:-
+Pc=yCO2*P;//[atm]
+Pw=yH2O*P;//[atm]
+disp("atm",Pw,"and","atm",Pc,"The partial pressures of CO2 and H2O are")
+L=0.6*d;//[m]
+x=Pc*L,y=Pw*L;//[m.atm]
+ec_1=0.16,ew_1=0.23;//Emissivity of CO2 and H2O at 1 atm pressure
+Cc=1.1,Cw=1.4;//Pressure Correction Factors are
+del_e=0.048;//Emissivity correction factor at T=1200K
+e_g=Cc*ec_1+Cw*ew_1-del_e;
+disp(e_g,"The effectivity of the combustion gases is") \ No newline at end of file
diff --git a/587/CH13/EX13.14/example13_14.sce b/587/CH13/EX13.14/example13_14.sce
new file mode 100755
index 000000000..4333b1838
--- /dev/null
+++ b/587/CH13/EX13.14/example13_14.sce
@@ -0,0 +1,24 @@
+clear;
+clc;
+
+//Example13.14[Radiation Heat Transfer in a Cylindrical Furnace]
+//Given:-
+Ts=600;//Wall Temperature[K]
+d=5,H=5;//Diameter and Height of cylindrical furnace
+Tg=1200,eg=0.45;//Average gas temperature and average emissivity of the combustion gases
+Pc=0.10,L=3,Pw=0.16;//From Previous examples
+//Solution:-
+x=Pc*L*Ts/Tg;//[m.atm]
+y=Pw*L*Ts/Tg;//[m.atm]
+ec_1=0.11,ew_1=0.25;//Emissivities of CO2 and H2O corresponding to 600K and 1atm
+Cc=1.1,Cw=1.4;//Correction Factors
+a_c=Cc*((Tg/Ts)^(0.65))*(ec_1);
+a_w=Cw*((Tg/Ts)^(0.45))*ew_1;
+disp(a_w,"and",a_c,"The absorptivities of CO2 and H2O are")
+del_a=0.027;
+a_g=a_c+a_w-del_a;
+disp(a_g,"The absorptivity of the combustion gases is")
+As=(%pi*d*H)+(%pi*(d^2)/2);//[m^2]
+disp("m^2",round(As),"the surface area of the cylindrical surface is")
+Q_net=round(As)*(5.67*10^(-8))*((eg*(Tg^4))-(a_g*(Ts^4)));
+disp("W",Q_net,"The net rate of radiation heat transfer from the combustion gases to walls of the furnace is") \ No newline at end of file
diff --git a/587/CH13/EX13.15/example13_15.sce b/587/CH13/EX13.15/example13_15.sce
new file mode 100755
index 000000000..8028653ea
--- /dev/null
+++ b/587/CH13/EX13.15/example13_15.sce
@@ -0,0 +1,17 @@
+clear;
+clc;
+
+//Example13.15[Effect of Clothing on Thermal Comfort]
+h_rad=4.7,h_conv=4.0;//The radiation and convection heat transfer coefficient[W/m^2.degree Celcius]
+R_clo=0.6*0.155;//Thermal resistance of clothing[m^2.degree Celcius/W]
+T_skin=33,T_amb=22;//Skin and Ambient temperature[degree Celcius]
+As=1.8;//Surface area of an average man
+//Solution:-
+h_comb=h_conv+h_rad;//combined heat transfer coefficient[W/m^2.degree Celcius]
+Q_sen_clo=As*(T_skin-T_amb)/(R_clo+(1/h_comb));//[W]
+disp("W",Q_sen_clo,"The sensible heat loss from this person when clothed is")
+//On removing the clothes
+//R_clo=0 Clothing resistance on removing clothes
+//Setting both heat transfer rates equal to determine new ambient air temperature
+T_amb_new=T_skin-(Q_sen_clo*(1/h_comb)/As)//[degree Celcius]
+disp("degree Celcius",T_amb_new,"The ambient temperature now is") \ No newline at end of file
diff --git a/587/CH13/EX13.2/example13_2.sce b/587/CH13/EX13.2/example13_2.sce
new file mode 100755
index 000000000..224004269
--- /dev/null
+++ b/587/CH13/EX13.2/example13_2.sce
@@ -0,0 +1,14 @@
+clear;
+clc;
+
+//Example13.2[Fraction of Radiation Leaving through an Opening]
+//Given:-
+r1=0.1;//Radius of enclosure[m]
+L=0.1;//Length of Enclosure[m]
+r2=0.05,r3=0.08;//Inner and outer radii of the ring[m]
+//Solution:-
+//Using Chart in Fig 13.7
+F12=0.11;
+F13=0.28;
+F1_ring=F13-F12;
+disp(F1_ring,"The fraction of the radiation leaving the base cyllinder enclosure that escapes through coaxial ring opening at its top surface is")
diff --git a/587/CH13/EX13.3/example13_3.sce b/587/CH13/EX13.3/example13_3.sce
new file mode 100755
index 000000000..266347521
--- /dev/null
+++ b/587/CH13/EX13.3/example13_3.sce
@@ -0,0 +1,11 @@
+clear;
+clc;
+
+//Example13.3[View Factors Associated with a Tetragon]
+//Given:-
+//A pyramid with square base and it's sides being isoceles triangle
+//Solution:=
+F11=0;//Since base is a flat surface
+//F12=F13=F14=F15=x
+x=(1-F11)/4;
+disp("of total radiation",x,"Each side pf the four surfaces of the pyramid recieves") \ No newline at end of file
diff --git a/587/CH13/EX13.5/example13_5.sce b/587/CH13/EX13.5/example13_5.sce
new file mode 100755
index 000000000..7c30bc4ca
--- /dev/null
+++ b/587/CH13/EX13.5/example13_5.sce
@@ -0,0 +1,15 @@
+clear;
+clc;
+
+//Example13.5[The Crossed-Strings Method for View Factors]
+a=12,b=5;//With od long parallel plates[cm]
+c=6;//Distance between the plates
+L1=a,L2=b,L3=c;
+L4=sqrt((7^2)+(6^2));
+L5=sqrt((5^2)+(6^2));
+L6=sqrt((12^2)+(6^2));
+F12_1=((L5+L6)-(L3+L4))/(2*L1);
+F13=(L1+L3-L6)/(2*L1);
+F14=(L1+L4+L5)/(2*L1);
+F12_2=1-F13-F14;
+disp(F12_1,"Therefore from two different methods F12_1=F12_2=",F13,"F13=",F14,"F14=") \ No newline at end of file
diff --git a/587/CH13/EX13.6/example13_6.sce b/587/CH13/EX13.6/example13_6.sce
new file mode 100755
index 000000000..457de6405
--- /dev/null
+++ b/587/CH13/EX13.6/example13_6.sce
@@ -0,0 +1,18 @@
+clear;
+clc;
+
+//Example13.6[Radiation Heat Transfer in a Black Furnace]
+//Given:-
+F12=0.2;
+A=5*5;//Area of 1 surface of cube[m^2]
+Tb=800,Tt=1500,Ts=500;//Temperature of base top and the side surfaces of the furbace[K]
+//Solution:-
+F11=0;
+Q11=0;
+F13=1-F11-F12;
+Q13=A*F13*(5.67*10^(-8))*((Tb^4)-(Ts^4));//[kW]
+disp("kW",round(Q13/1000),"The net rate of heat transfer from surface1 to surface3 is")
+Q12=A*F12*(5.67*10^(-8))*((Tb^4)-(Tt^4));//[kW]
+disp("kW",round(Q12/1000),"The net rate of radiation heat transfer from siurface1 to surface2 is")
+Q1=Q11+Q12+Q13;//[kW]
+disp("kW",round(Q1/1000),"Rhe net radiation heat transfer from the base surface is")
diff --git a/587/CH13/EX13.7/example13_7.sce b/587/CH13/EX13.7/example13_7.sce
new file mode 100755
index 000000000..46c76e70e
--- /dev/null
+++ b/587/CH13/EX13.7/example13_7.sce
@@ -0,0 +1,10 @@
+clear;
+clc;
+
+//Example13.7[Radiation Heat Transfer between Parallel Plates]
+//Given:-
+T1=800,T2=500;//Temp of parallel plates[K]
+e1=0.2,e2=0.7;//Emissivities
+//Solution:-
+q12=(5.67*10^(-8))*((T1^4)-(T2^4))/((1/e1)+(1/e2)-1);
+disp("is transferred from plate 1 to plate 2 by radiation per unit surface area of either plate","W",round(q12),"The net heat at the rate of") \ No newline at end of file
diff --git a/587/CH13/EX13.8/example13_8.sce b/587/CH13/EX13.8/example13_8.sce
new file mode 100755
index 000000000..a21e403e3
--- /dev/null
+++ b/587/CH13/EX13.8/example13_8.sce
@@ -0,0 +1,30 @@
+clear;
+clc;
+
+//Example13.8[Radiation Heat Transfer in Cylindrical Furnace]
+//Given:-
+ro=1,H=1;//Radius amd height of cylinder[m]
+e1=0.8,e2=0.4;//Emissivities
+T1=700,T2=500;//Top and base temperatures of furnace[K]
+T3=400;//Side durface temperature[K]
+F11=0,F12=0.38;
+//Solution:-
+A1=%pi*(ro^2);//[m^2]
+A2=A1;//[m^2]
+A3=2*%pi*ro*H;//[m^2]
+F13=1-F11-F12;
+F21=F12;//Top and Bottom are symmetric
+F31=F13*(A1/A3);
+F23=F13;
+F32=F31;
+function[i]=rad(J)
+ i(1)=J(1)+(((1-e1)/e1)*((F12*(J(1)-(J(2))))+(F13*((J(1))-(J(3))))))-((T1^4)*(5.67*10^(-8)));
+ i(2)=J(2)+(((1-e2)/e2)*((F21*(J(2)-J(1)))+(F23*(J(2)-J(3)))))-((T2^4)*(5.67*10^(-8)));
+ i(3)=J(3)-((T3^4)*(5.67*10^(-8)));
+ deff('[i]=rad(J)',['i_1=J(1)+(((1-e1)/e1)*((F12*(J(1)-(J(2))))+(F13*((J(1))-(J(3))))))-((T1^4)*(5.67*10^(-8)))','i_2=J(2)+(((1-e2)/e2)*((F21*(J(2)-J(1)))+(F23*(J(2)-J(3)))))-((T2^4)*(5.67*10^(-8)))','i_3=J(3)-((T3^4)*(5.67*10^(-8)))'])
+ disp(J(3),J(2),J(1))
+ Q1=A1*((F12*(J(1)-J(2)))+(F13*(J(1)-J(3))));//[kW]
+ Q2=A2*((F21*(J(2)-J(1)))+(F13*(J(2)-J(3))));//[kW]
+ Q3=A3*((F31*(J(3)-J(1)))+(F32*(J(3)-J(2))));//[kW]
+ disp("kW",Q3/1000,Q2/1000,Q1/1000,"The net rates of radiation heat transfer at the three surfaces are")
+ \ No newline at end of file
diff --git a/587/CH13/EX13.9/example13_9.sce b/587/CH13/EX13.9/example13_9.sce
new file mode 100755
index 000000000..301966d2c
--- /dev/null
+++ b/587/CH13/EX13.9/example13_9.sce
@@ -0,0 +1,15 @@
+clear;
+clc;
+
+//Example13.9[Radiation Heat Transfer in a Triangular Furnace]
+//Given:-
+A1=1,A2=1,A3=1;//Area of each side[m^2]
+T1=600,T2=1000;//[K]
+e=0.7;
+F12=0.5,F13=0.5,F23=0.5;//Symmetry
+//Solution:-
+Eb1=5.67*10^(-8)*(T1^4);//[W/m^2]
+Eb2=5.67*10^(-8)*(T2^4);//[W/m^2]
+Q=(Eb2-Eb1)/(((1-e)/(A1*e))+((((A1*F12)+(1/((1/(A1*F13))+(1/(A2*F23))))))^(-1)));//[kW]
+disp("kW",round(Q/1000),"Heat at the rate of")
+disp("must be supplied to the heated surface per unit lemgth of the duct to maintain steady operation in the furnace") \ No newline at end of file