summaryrefslogtreecommitdiff
path: root/572/CH12/EX12.4/c12_4.sce
diff options
context:
space:
mode:
Diffstat (limited to '572/CH12/EX12.4/c12_4.sce')
-rwxr-xr-x572/CH12/EX12.4/c12_4.sce59
1 files changed, 59 insertions, 0 deletions
diff --git a/572/CH12/EX12.4/c12_4.sce b/572/CH12/EX12.4/c12_4.sce
new file mode 100755
index 000000000..24b125490
--- /dev/null
+++ b/572/CH12/EX12.4/c12_4.sce
@@ -0,0 +1,59 @@
+//(12.4) A gas mixture consisting of CO2 and O2 with mole fractions 0.8 and 0.2, respectively, expands isentropically and at steady state through a nozzle from 700 K, 5 bars, 3 m/s to an exit pressure of 1 bar. Determine (a) the temperature at the nozzle exit, in K, (b) the entropy changes of the CO2 and O2 from inlet to exit, in KJ/Kmol.K (c) the exit velocity, in m/s.
+
+//solution
+
+//variable initialization
+y1 = .8 //mole fraction of CO2
+y2 = .2 //mole fraction of O2
+T1 = 700 //in kelvin
+p1 = 5 //in bars
+V1 = 3 //in m/s
+p2 = 1 //in bars
+
+
+//part(a)
+//from table A-23
+sO2barT1 = 231.358
+sCO2barT1 = 250.663
+
+RHS = y2*sO2barT1 + y1*sCO2barT1 + 8.314*log(p2/p1)
+
+//using table A-23
+LHSat510K = y2*221.206 + y1*235.7
+LHSat520K = y2*221.812 + y1*236.575
+//using linear interpolation,
+T2 = 510 +[(520-510)/(LHSat520K-LHSat510K)]*(RHS-LHSat510K)
+printf('the temperature at the nozzle exit in K is: %f',T2)
+
+//part(b)
+//from table A-23
+sbarO2T2 = 221.667 //in kj/kmol.K
+sbarO2T1 = 231.358 //in kj/kmol.K
+sbarCO2T2 = 236.365 //in kj/kmol.K
+sbarCO2T1 = 250.663 //in kj/kmol.K
+
+deltasbarO2 = sbarO2T2-sbarO2T1-8.314*log(p2/p1) //in kj/kmol.K
+deltasbarCO2 = sbarCO2T2-sbarCO2T1-8.314*log(p2/p1) //in kj/kmol.K
+
+printf('\n\nthe entropy changes of the CO2 from inlet to exit, in KJ/Kmol.K is: %f',deltasbarCO2)
+printf('\nthe entropy change of the O2 from inlet to the exit in kj/kmol.k is: %f',deltasbarO2)
+
+//part(c)
+//from table A-23, the molar specific enthalpies of O2 and CO2 are
+h1barO2 = 21184
+h2barO2 = 15320
+h1barCO2 = 27125
+h2barCO2 = 18468
+
+M = y1*44 + y2*32 //apparent molecular weight of the mixture in kg/kmol
+deltah = (1/M)*[y2*(h1barO2-h2barO2) + y1*(h1barCO2-h2barCO2)]
+V2 = sqrt(V1^2+ 2*deltah*10^3)
+printf('\n\nthe exit velocity in m/s is: %f',V2)
+
+
+
+
+
+
+
+