diff options
Diffstat (limited to '555/CH3')
-rw-r--r-- | 555/CH3/EX3.1/1.sce | 17 | ||||
-rw-r--r-- | 555/CH3/EX3.2/2.sce | 15 | ||||
-rw-r--r-- | 555/CH3/EX3.3/3.sce | 20 | ||||
-rw-r--r-- | 555/CH3/EX3.4/4.sce | 26 | ||||
-rw-r--r-- | 555/CH3/EX3.5/5.sce | 36 | ||||
-rw-r--r-- | 555/CH3/EX3.6/6.sce | 31 |
6 files changed, 145 insertions, 0 deletions
diff --git a/555/CH3/EX3.1/1.sce b/555/CH3/EX3.1/1.sce new file mode 100644 index 000000000..c6e5a51b2 --- /dev/null +++ b/555/CH3/EX3.1/1.sce @@ -0,0 +1,17 @@ +// Implementation of example 3.1
+// Basic and Applied Thermodynamics by P.K.Nag
+// page 54
+
+clc
+clear
+
+P=760 //(mm Hg)
+dv=0.5 //(m^3)
+// since P is in mm Hg and change in volume(dv) is in m^3,so we'll change the unit of pressure
+p=101.325 //(kN/m^2)
+
+Wd=(p*dv);
+disp("work done by system =")
+disp(Wd)
+disp("kJ")
+// in this work is done by the system,so it is positive
diff --git a/555/CH3/EX3.2/2.sce b/555/CH3/EX3.2/2.sce new file mode 100644 index 000000000..8144c7906 --- /dev/null +++ b/555/CH3/EX3.2/2.sce @@ -0,0 +1,15 @@ +// Implementation of example 3.2
+// Basic and Applied Thermodynamics by P.K.Nag
+// page 55
+
+clc
+clear
+
+p=101.325 // (kN/m^2)
+dv=0.6 //(m^3)
+
+Wd=(p*dv);
+disp("work done by air =")
+disp(Wd)
+disp("kJ")
+// since the free-air boundary is contracting,the work done by system is negative and surroundings do positive work upon the system
diff --git a/555/CH3/EX3.3/3.sce b/555/CH3/EX3.3/3.sce new file mode 100644 index 000000000..616eb2d43 --- /dev/null +++ b/555/CH3/EX3.3/3.sce @@ -0,0 +1,20 @@ +// Implementation of example 3.3
+// Basic and Applied Thermodynamics by P.K.Nag
+// page 55
+
+clc
+clear
+
+p=101.325 // (atmospheric pressure in kN/m^2)
+N=10000 // no. of revolutions
+T=1.275 // (torque in Nm)
+d=0.6 //(diameter in m)
+l=0.8 //(distance moved in m)
+
+w1=(2*%pi*T*N)/1000; // work done by stirring device
+a=((%pi/4)*d^2);
+w2=(p*a)*l; // work done by system
+w=(-w1)+w2;
+disp("net work transfer")
+disp(w)
+disp("kJ")
diff --git a/555/CH3/EX3.4/4.sce b/555/CH3/EX3.4/4.sce new file mode 100644 index 000000000..75d618bb5 --- /dev/null +++ b/555/CH3/EX3.4/4.sce @@ -0,0 +1,26 @@ +// Implementation of example 3.4
+// Basic and Applied Thermodynamics by P.K.Nag
+// page 56
+
+clc
+clear
+
+s=150 // (speed in rpm)
+d=0.8 // (cylinder diameter in m)
+st=1.2 // (stroke of piston in m)
+ad=5.5d-4 // (area of indicator diagram in m^2)
+ld=0.06 // (length of diagram in m)
+sp=147 // (spring value in Mpa/m)
+
+pm=(ad/ld)*sp;
+// one engine cycle is completed in two strokes of piston or one revolution of crank shaft
+a=(%pi/4)*d^2;
+wd=(pm*a)*(st*s);
+// since the engine is single-acting and it has 12 cylinders,each contributing an equal power,the rate of work transfer is
+W=(wd*12)/60;
+W=W*1000;
+disp(pm)
+disp(wd)
+disp("Rate of work transfer =")
+disp(W)
+disp("kW")
diff --git a/555/CH3/EX3.5/5.sce b/555/CH3/EX3.5/5.sce new file mode 100644 index 000000000..0fb76164b --- /dev/null +++ b/555/CH3/EX3.5/5.sce @@ -0,0 +1,36 @@ +// Implementation of example 3.5
+// Basic and Applied Thermodynamics by P.K.Nag
+// page 57
+
+clc
+clear
+
+rt=5000 // (rate of heat supply in kg/h)
+t1=15 // (in degree celsius)
+t2=1650 // (in degree celsius)
+mp=1535 // (melting point in degree celsius)
+lt=270 // (latent heat in kJ/kg*K)
+shs=0.502 // (specific heat in solid state in kJ/kg*K)
+shl=29.93 // (specific heat in liquid state in kJ/kg*K)
+e=0.7 // (efficiency)
+dn=6900 // (density in kg/m^3)
+wt=56 // (atomic wt of iron)
+
+ht=shs*(mp-t1)+lt+shl*(t2-mp)/wt;
+// ht is heat required to melt 1 kg of iron
+rm=(rt*ht);
+rate=(rm/e)/3600;
+disp("rating of furnace =")
+disp(rate)
+disp("kW")
+// since bath volume is 3 times the hourly melting rate
+V=(3*rt)/dn;
+// let d & l be the diameter & length and l=2d
+d=(V*2/%pi)^(1/3);
+l=(2*d);
+disp("diameter =")
+disp(d)
+disp("m")
+disp("length")
+disp(l)
+disp("m")
diff --git a/555/CH3/EX3.6/6.sce b/555/CH3/EX3.6/6.sce new file mode 100644 index 000000000..c874432bb --- /dev/null +++ b/555/CH3/EX3.6/6.sce @@ -0,0 +1,31 @@ +// Implementation of example 3.6
+// Basic and Applied Thermodynamics by P.K.Nag
+// page 57
+
+clc
+clear
+
+shs=0.9 // (specific heat in solid state in kJ/kg*K)
+lt=390 // (latent heat in kJ/kg)
+wt=27 // (atomic wt of aluminium)
+dn=2400 // (density in kg/m^3)
+Tf=700 // (final temp in degree celsius)
+mp2=660 // (melting point in degree celsius)
+t1=15 // (in degree celsius)
+shl=29.93 // (specific heat in liquid state in kJ/kg*K)
+e=0.7 // (efficiency)
+V=2.18 // (m^3) from example 3.5
+rating=2.17d3 // (rating of furnace as evaluated in example 3.5)
+
+ht=shs*(mp2-t1)+lt+shl*(Tf-mp2)/wt;
+// ht is heat required per kg of aluminium
+hs=(ht/e);
+rate=(rating/hs)*3600; // 3600 is used to convert rate into kg/hour
+rate=(rate/1000) // to convert it into tonnes/hour
+disp("rate at which aluminium can be melted with given power =")
+disp(rate)
+disp("tonnes/hour")
+mass=(V*dn)/1000;
+disp("mass of aluminium that can be held =")
+disp(mass)
+disp("tonnes")
|