summaryrefslogtreecommitdiff
path: root/534/CH9/EX9.4/9_4_Steam_Pipe.sce
diff options
context:
space:
mode:
Diffstat (limited to '534/CH9/EX9.4/9_4_Steam_Pipe.sce')
-rw-r--r--534/CH9/EX9.4/9_4_Steam_Pipe.sce30
1 files changed, 30 insertions, 0 deletions
diff --git a/534/CH9/EX9.4/9_4_Steam_Pipe.sce b/534/CH9/EX9.4/9_4_Steam_Pipe.sce
new file mode 100644
index 000000000..4653eb1cd
--- /dev/null
+++ b/534/CH9/EX9.4/9_4_Steam_Pipe.sce
@@ -0,0 +1,30 @@
+clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 9.4 Page 580 \n'); //Example 9.4
+// Heat Loss from pipe per meter of length
+
+//Operating Conditions
+Ts = 165+273; //[K] Surface Temperature
+Tsurr = 23+273; //[K] Surrounding Temperature
+D = .1 ;//[m] Diameter
+e = .85 ;// emissivity
+stfncnstt=5.67*10^(-8) ;// [W/m^2.K^4] - Stefan Boltzmann Constant
+
+//Table A.4 Air Properties T = 303 K
+k = 31.3*10^-3 ;//[W/m.K] Conductivity
+uv = 22.8*10^-6 ;//[m^2/s] Kinematic Viscosity
+al = 32.8*10^-6 ;//[m^2/s] alpha
+be = 2.725*10^-3 ;//[K^-1] Tf^-1
+Pr = .697 ;// Prandtl number
+g = 9.81 ;//[m^2/s] gravitational constt
+
+Ra = g*be*(Ts-Tsurr)/al*D^3/uv;
+//From equatiom 9.34
+Nu = [.60 + .387*Ra^(1/6)/[1+(.559/Pr)^(9/16)]^(8/27)]^2;
+h = Nu*k/D;
+
+qconv = h*%pi*D*(Ts-Tsurr);
+qrad = e*%pi*D*stfncnstt*(Ts^4-Tsurr^4);
+
+printf("\n Rate of heat loss per unit length of pipe is %i W/m",qconv+qrad);
+//END \ No newline at end of file