diff options
Diffstat (limited to '534/CH9/EX9.3/9_3_Rectangular_Duct.sce')
-rw-r--r-- | 534/CH9/EX9.3/9_3_Rectangular_Duct.sce | 35 |
1 files changed, 35 insertions, 0 deletions
diff --git a/534/CH9/EX9.3/9_3_Rectangular_Duct.sce b/534/CH9/EX9.3/9_3_Rectangular_Duct.sce new file mode 100644 index 000000000..587ded94a --- /dev/null +++ b/534/CH9/EX9.3/9_3_Rectangular_Duct.sce @@ -0,0 +1,35 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 9.3 Page 577 \n'); //Example 9.3
+// Heat Loss from duct per meter of length
+
+//Operating Conditions
+Ts = 45+273; //[K] Surface Temperature
+Tsurr = 15+273 ;//[K] Surrounding Temperature
+H = .3 ;//[m] Height
+w = .75 ;//[m] Width
+
+//Table A.4 Air Properties T = 303 K
+k = 26.5*10^-3 ;//[W/m.K]
+uv = 16.2*10^-6 ;//[m^2/s] Kinematic Viscosity
+al = 22.9*10^-6 ;//[m^2/s] alpha
+be = 3.3*10^-3 ;//[K^-1] Tf^-1
+Pr = .71 ;// Prandtl number
+g = 9.81 ;//[m^2/s] gravitational constt
+
+Ra = g*be*(Ts-Tsurr)/al*H^3/uv; //Length = Height
+//From equatiom 9.27
+Nu = [.68 + .67*Ra^.25/[1+(.492/Pr)^(9/16)]^(4/9)];
+//for Sides
+hs = Nu*k/H;
+
+Ra2 = g*be*(Ts-Tsurr)/al*(w/2)^3/uv; //Length = w/2
+//For top eq 9.31
+ht = [k/(w/2)]*.15*Ra2^.3334;
+//For bottom Eq 9.32
+hb = [k/(w/2)]*.27*Ra2^.25;
+
+q = (2*hs*H+ht*w+hb*w)*(Ts-Tsurr);
+
+printf("\n Rate of heat loss per unit length of duct is %i W/m",q);
+//END
\ No newline at end of file |