summaryrefslogtreecommitdiff
path: root/534/CH9/EX9.1/9_1_Vertical_Plate.sce
diff options
context:
space:
mode:
Diffstat (limited to '534/CH9/EX9.1/9_1_Vertical_Plate.sce')
-rw-r--r--534/CH9/EX9.1/9_1_Vertical_Plate.sce27
1 files changed, 27 insertions, 0 deletions
diff --git a/534/CH9/EX9.1/9_1_Vertical_Plate.sce b/534/CH9/EX9.1/9_1_Vertical_Plate.sce
new file mode 100644
index 000000000..5030e4211
--- /dev/null
+++ b/534/CH9/EX9.1/9_1_Vertical_Plate.sce
@@ -0,0 +1,27 @@
+clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 9.1 Page 569 \n'); //Example 9.1
+// Boundary Layer thickness at trailing edge.
+
+//Operating Conditions
+Ts = 70+273; //[K] Surface Temperature
+Tsurr = 25+273; //[K] Surrounding Temperature
+v1 = 0; //[m/s] Velocity of free air
+v2 = 5; //[m/s] Velocity of free air
+L = .25; //[m] length
+
+//Table A.4 Air Properties T = 320 K
+uv = 17.95*10^-6; //[m^2/s] Kinematic Viscosity
+be = 3.12*10^-3; //[K^-1] Tf^-1
+Pr = 269; // Prandtl number
+g = 9.81; //[m^2/s]gravitational constt
+
+Gr = g*be*(Ts-Tsurr)*L^3/uv^2;
+del = 6*L/(Gr/4)^.25;
+printf("\n Boundary Layer thickness at trailing edge for no air stream %.3f m",del);
+
+Re = v2*L/uv;
+printf("\n\n For air stream at 5 m/s As the Reynolds Number is %.2e the free convection boundary layer is Laminar",Re);
+del2 = 5*L/(Re)^.5;
+printf("\n Boundary Layer thickness at trailing edge for air stream at 5 m/s is %.4f m",del2);
+//END \ No newline at end of file