summaryrefslogtreecommitdiff
path: root/534/CH8/EX8.2/8_2_Internal_flow.sce
diff options
context:
space:
mode:
Diffstat (limited to '534/CH8/EX8.2/8_2_Internal_flow.sce')
-rw-r--r--534/CH8/EX8.2/8_2_Internal_flow.sce25
1 files changed, 25 insertions, 0 deletions
diff --git a/534/CH8/EX8.2/8_2_Internal_flow.sce b/534/CH8/EX8.2/8_2_Internal_flow.sce
new file mode 100644
index 000000000..3ad632e03
--- /dev/null
+++ b/534/CH8/EX8.2/8_2_Internal_flow.sce
@@ -0,0 +1,25 @@
+clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 8.2 Page 499 \n'); //Example 8.2
+// Length of tube needed to achieve the desired outlet temperature
+//Local convection coefficient at the outlet
+
+//Operating Conditions
+m = .1; //[kg/s] mass flow rate of water
+Ti = 20+273; //[K] Inlet temp
+To = 60+273; //[K] Outlet temperature
+Di = .02; //[m] Inner Diameter
+Do = .04; //[m] Outer Diameter
+q = 10^6; //[w/m^3] Heat generation Rate
+Tsi = 70+273; //[K] Inner Surface Temp
+//Table A.4 Air Properties T = 313 K
+cp = 4179; //[J/kg.K] specific heat
+
+L = 4*m*cp*(To-Ti)/(%pi*(Do^2-Di^2)*q);
+
+//From Newtons Law of cooling, Equation 8.27, local heat convection coefficient is
+h = q*(Do^2-Di^2)/(Di*4*(Tsi-To));
+
+printf("\n Length of tube needed to achieve the desired outlet temperature = %.1f m \n Local convection coefficient at the outlet = %i W/m^2.K",L,h);
+
+//END \ No newline at end of file