diff options
Diffstat (limited to '534/CH5/EX5.5')
-rw-r--r-- | 534/CH5/EX5.5/5_5_Sphere_Two_Step.sce | 34 |
1 files changed, 34 insertions, 0 deletions
diff --git a/534/CH5/EX5.5/5_5_Sphere_Two_Step.sce b/534/CH5/EX5.5/5_5_Sphere_Two_Step.sce new file mode 100644 index 000000000..f0fb0366d --- /dev/null +++ b/534/CH5/EX5.5/5_5_Sphere_Two_Step.sce @@ -0,0 +1,34 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 5.5 Page 280 \n'); //Example 5.5
+// Two step cooling process of Sphere
+
+//Operating Conditions
+
+ha = 10; //[W/m^2.K] Heat Convection coefficientat air
+hw = 6000; //[W/m^2.K] Heat Convection coefficientat water
+k = 20; //[W/m.K] Thermal Conductivity
+rho = 3000; //[kg/m^3] Density
+c = 1000; //[J/kg.K] Specific Heat
+alpha = 6.66*10^-6; //[m^2/s]
+Tiw = 335+273; //[K] Initial Temp
+Tia = 400+273; //[K] Initial Temp
+Tsurr = 20+273; //[K] Temp of surrounding
+T = 50+273; //[K] Temp of center
+ro = .005; //[m] radius of sphere
+
+//Using eqn 5.10 and
+Lc = ro/3;
+Bi = ha*Lc/k;
+ta = rho*ro*c*2.30*(log10((Tia-Tsurr)/(Tiw-Tsurr)))/(3*ha);
+
+//From Table 5.1 at this Bi
+C1 = 1.367;
+eta = 1.8;
+Fo = -1*2.30*log10((T-Tsurr)/((Tiw-Tsurr)*C1))/eta^2;
+
+tw = Fo*ro^2/alpha;
+
+printf("\n (a) Time required to accomplish desired cooling in air ta = %.1f s\n\n (b) Time required to accomplish desired cooling in water bath tw = %.2f s",ta,tw);
+
+//END
\ No newline at end of file |