summaryrefslogtreecommitdiff
path: root/534/CH5/EX5.4/5_4_Radial_Two_Step.sce
diff options
context:
space:
mode:
Diffstat (limited to '534/CH5/EX5.4/5_4_Radial_Two_Step.sce')
-rw-r--r--534/CH5/EX5.4/5_4_Radial_Two_Step.sce40
1 files changed, 40 insertions, 0 deletions
diff --git a/534/CH5/EX5.4/5_4_Radial_Two_Step.sce b/534/CH5/EX5.4/5_4_Radial_Two_Step.sce
new file mode 100644
index 000000000..64b3b4b7b
--- /dev/null
+++ b/534/CH5/EX5.4/5_4_Radial_Two_Step.sce
@@ -0,0 +1,40 @@
+clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 5.4 Page 278 \n'); //Example 5.4
+// Radial System with Convection
+
+//Operating Conditions
+
+h = 500; //[W/m^2.K] Heat Convection coefficientat inner surface
+k = 63.9; //[W/m.K] Thermal Conductivity
+rho = 7832; //[kg/m^3] Density
+c = 434; //[J/kg.K] Specific Heat
+alpha = 18.8*10^-6; //[m^2/s]
+L = 40*10^-3; //[m] Metre
+Ti = -20+273; //[K] Initial Temp
+Tsurr = 60+273; //[K] Temp of oil
+t = 8*60 ; //[sec] time
+D = 1 ; //[m] Diameter of pipe
+
+//Using eqn 5.10 and 5.12
+Bi = h*L/k;
+Fo = alpha*t/L^2;
+
+//From Table 5.1 at this Bi
+C1 = 1.047;
+eta = 0.531;
+theta0=C1*exp(-eta^2*Fo);
+T = Tsurr+theta0*(Ti-Tsurr);
+
+//Using eqn 5.40b
+x=1;
+theta = theta0*cos(eta);
+Tl = Tsurr + (Ti-Tsurr)*theta;
+q = h*[Tl - Tsurr];
+
+//Using Eqn 5.44, 5.46 and Vol per unit length V = pi*D*L
+Q = [1-(sin(eta)/eta)*theta0]*rho*c*%pi*D*L*(Ti-Tsurr);
+
+printf("\n (a) After 8 min Biot number = %.2f and Fourier Numer = %.2f \n\n (b) Temperature of exterior pipe surface after 8 min = %i degC \n\n (c) Heat Flux to the wall at 8 min = %i W/m^2 \n\n (d) Energy transferred to pipe per unit length after 8 min = %.2e J/m",Bi,Fo, T-273,q,Q);
+
+//END \ No newline at end of file