summaryrefslogtreecommitdiff
path: root/534/CH4/EX4.4
diff options
context:
space:
mode:
Diffstat (limited to '534/CH4/EX4.4')
-rw-r--r--534/CH4/EX4.4/4_4_Turbine_Matrix.sce73
1 files changed, 73 insertions, 0 deletions
diff --git a/534/CH4/EX4.4/4_4_Turbine_Matrix.sce b/534/CH4/EX4.4/4_4_Turbine_Matrix.sce
new file mode 100644
index 000000000..490bed5e7
--- /dev/null
+++ b/534/CH4/EX4.4/4_4_Turbine_Matrix.sce
@@ -0,0 +1,73 @@
+clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 4.4 Page 230 \n'); //Example 4.4
+// Temperature Field and Rate of Heat Transfer
+
+//Operating Conditions
+
+ho = 1000; //[W/m^2.K] Heat Convection coefficient
+hi = 200; //[W/m^2.K] Heat Convection coefficient
+Ti = 400; //[K] Temp of Air
+Tg = 1700; //[K] Temp of Gas
+h = 10 ; //[W/m^2.K] Heat Convection coefficient
+
+A = 2*6*10^-6 ; //[m^2] Cross section of each Channel
+x = .004 ; //[m] Spacing between joints
+t = .006; //[m] Thickness
+k = 25; //[W/m.K] Thermal Conductivity of Blade
+delx = .001 ; //[m]
+dely = .001 ; //[m]
+
+//Applying Eqn 4.42 and 4.48
+A = [-(2+ho*delx/k) 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
+ 1 -2*(2+ho*delx/k) 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0;
+ 0 1 -2*(2+ho*delx/k) 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0;
+ 0 0 1 -2*(2+ho*delx/k) 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0;
+ 0 0 0 1 -2*(2+ho*delx/k) 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0;
+ 0 0 0 0 1 -(2+ho*delx/k) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0;
+ 1 0 0 0 0 0 -4 2 0 0 0 0 1 0 0 0 0 0 0 0 0;
+ 0 1 0 0 0 0 1 -4 1 0 0 0 0 1 0 0 0 0 0 0 0;
+ 0 0 1 0 0 0 0 1 -4 1 0 0 0 0 1 0 0 0 0 0 0;
+ 0 0 0 1 0 0 0 0 1 -4 1 0 0 0 0 1 0 0 0 0 0;
+ 0 0 0 0 1 0 0 0 0 1 -4 1 0 0 0 0 1 0 0 0 0;
+ 0 0 0 0 0 1 0 0 0 0 2 -4 0 0 0 0 0 1 0 0 0;
+ 0 0 0 0 0 0 1 0 0 0 0 0 -4 2 0 0 0 0 1 0 0;
+ 0 0 0 0 0 0 0 1 0 0 0 0 1 -4 1 0 0 0 0 1 0;
+ 0 0 0 0 0 0 0 0 2 0 0 0 0 2 -2*(3+hi*delx/k) 1 0 0 0 0 1;
+ 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 -2*(2+hi*delx/k) 1 0 0 0 0;
+ 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 -2*(2+hi*delx/k) 1 0 0 0;
+ 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 -(2+hi*delx/k) 0 0 0;
+ 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 -2 1 0;
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 -4 1;
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 -(2+hi*delx/k)];
+
+C = [-ho*delx*Tg/k;
+ -2*ho*delx*Tg/k;
+ -2*ho*delx*Tg/k;
+ -2*ho*delx*Tg/k;
+ -2*ho*delx*Tg/k;
+ -ho*delx*Tg/k;
+ 0;
+ 0;
+ 0;
+ 0;
+ 0;
+ 0;
+ 0;
+ 0;
+ -2*hi*delx*Ti/k;
+ -2*hi*delx*Ti/k;
+ -2*hi*delx*Ti/k;
+ -hi*delx*Ti/k;
+ 0;
+ 0;
+ -hi*delx*Ti/k];
+
+T = inv(A)*C;
+
+printf("\n Temp Distribution = ");
+printf("\n %.1f K ", T);
+
+q = 4*ho*[(delx/2)*(Tg-T(1))+delx*(Tg-T(2))+delx*(Tg-T(3))+ delx*(Tg-T(4))+delx*(Tg-T(5))+delx*(Tg-T(6))/2];
+printf("\n\n Heat rate Transfer %.1f W/m ", q);
+//END \ No newline at end of file