summaryrefslogtreecommitdiff
path: root/534/CH12/EX12.6
diff options
context:
space:
mode:
Diffstat (limited to '534/CH12/EX12.6')
-rw-r--r--534/CH12/EX12.6/12_6_Metallic_surface.sce32
1 files changed, 32 insertions, 0 deletions
diff --git a/534/CH12/EX12.6/12_6_Metallic_surface.sce b/534/CH12/EX12.6/12_6_Metallic_surface.sce
new file mode 100644
index 000000000..2a4c4b7f7
--- /dev/null
+++ b/534/CH12/EX12.6/12_6_Metallic_surface.sce
@@ -0,0 +1,32 @@
+clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 12.6 Page 751 \n')// Example 12.6
+
+// Spectral , Normal emissivity en and spectral hemispherical emissivity e
+// Spectral normal intensity In and Spectral emissive power
+
+T = 2000 ;//[K] temperature of surface
+wl = 1 ;//[micro-m] wavelength
+stfncnstt = 5.67*10^-8; //[W/m^2.K^4] Stefan-Boltzmann constant
+
+// From the given graph of emissivities
+e1 = .3;
+e2 = .6;
+//From Equation 12.26 Black Body Radiation
+Eb = stfncnstt*T^4; //[W/m^2]
+
+//Equation 12.34
+i1 = integrate('e1*cos(x)*sin(x)','x',0,%pi/3);
+i2 = integrate('e2*cos(x)*sin(x)','x',%pi/3,4*%pi/9);
+e = 2*[i1+i2];
+
+// From Table 12.1 at wl = 1 micro-m and T = 2000 K.
+
+I = .493*10^-4 * stfncnstt*T^5 ;//[W/m^2.micro-m.sr]
+
+In = e1*I;
+
+//Using Equation 12.32 for wl = 1 micro-m and T = 2000 K
+E = e*%pi*I;
+
+printf('\n Spectral Normal emissivity en = %.1f and spectral hemispherical emissivity e = %.2f \n Spectral normal intensity In = %.2e W/m^2.micro-m.sr and Spectral emissive power = %.1e W/m^2.micro-m.sr ', e1, e,In,E); \ No newline at end of file