summaryrefslogtreecommitdiff
path: root/534/CH10/EX10.3
diff options
context:
space:
mode:
Diffstat (limited to '534/CH10/EX10.3')
-rw-r--r--534/CH10/EX10.3/10_3_Condensation_Chimney.sce36
1 files changed, 36 insertions, 0 deletions
diff --git a/534/CH10/EX10.3/10_3_Condensation_Chimney.sce b/534/CH10/EX10.3/10_3_Condensation_Chimney.sce
new file mode 100644
index 000000000..1153e9ae8
--- /dev/null
+++ b/534/CH10/EX10.3/10_3_Condensation_Chimney.sce
@@ -0,0 +1,36 @@
+clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 10.3 Page 648 \n'); //Example 10.3
+// Heat Transfer and Condensation Rates
+
+//Operating Conditions
+Ts = 50+273 ;//[K] Surface Temperature
+Tsat = 100+273 ;//[K] Saturated Temperature
+D = .08 ;//[m] Diameter of pan
+g = 9.81 ;//[m^2/s] gravitaional constant
+L = 1 //[m] Length
+//Table A.6 Saturated Vapor Properties p = 1.0133 bars
+rhov = .596 ;//[kg/m^3] Density
+hfg = 2257*10^3 ;//[J/kg] Specific Heat
+//Table A.6 Saturated water Liquid Properties T = 348 K
+rhol = 975 ;//[kg/m^3] Density
+cpl = 4193 ; //[J/kg.K] Specific Heat
+kl = 0.668 ;//[W/m.K] Conductivity
+ul = 375*10^-6 ;//[N.s/m^2] Viscosity
+uvl = ul/rhol; ;//[N.s.m/Kg] Kinematic viscosity
+Ja = cpl*(Tsat-Ts)/hfg;
+hfg2 = hfg*(1+.68*Ja);
+//Equation 10.43
+Re = [3.70*kl*L*(Tsat-Ts)/(ul*hfg2*(uvl^2/g)^.33334)+4.8]^.82;
+
+//From equation 10.41
+hL = Re*ul*hfg2/(4*L*(Tsat-Ts));
+q = hL*(%pi*D*L)*(Tsat-Ts);
+
+m = q/hfg;
+//Using Equation 10.26
+del = [4*kl*ul*(Tsat-Ts)*L/(g*rhol*(rhol-rhov)*hfg2)]^.25;
+
+
+printf("\n Heat Transfer Rate = %.1f kW and Condensation Rates= %.4f kg/s \n And as del(L) %.3f mm << (D/2) %.2f m use of vertical cylinder correlation is justified",q/1000,m,del*1000,D/2);
+//END \ No newline at end of file