summaryrefslogtreecommitdiff
path: root/534/CH1/EX1.4/1_4_Coolant_Fuid_Velocity.sce
diff options
context:
space:
mode:
Diffstat (limited to '534/CH1/EX1.4/1_4_Coolant_Fuid_Velocity.sce')
-rw-r--r--534/CH1/EX1.4/1_4_Coolant_Fuid_Velocity.sce30
1 files changed, 30 insertions, 0 deletions
diff --git a/534/CH1/EX1.4/1_4_Coolant_Fuid_Velocity.sce b/534/CH1/EX1.4/1_4_Coolant_Fuid_Velocity.sce
new file mode 100644
index 000000000..814df67ef
--- /dev/null
+++ b/534/CH1/EX1.4/1_4_Coolant_Fuid_Velocity.sce
@@ -0,0 +1,30 @@
+clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 1.4 Page 20 \n')// Example 1.4
+// Find Velocity of Coolant Fluid
+
+Ts = 56.4+273.15; //[K] - Surface Temperature of Steam
+Tsurr = 25+273.15; //[K] - Temperature of Surroundings
+e=.88; // Emissivity of Surface
+
+//As h=(10.9*V^.8)[W/m^2.k] - Thermal Convectivity from surface to air
+stfncnstt=5.67*10^(-8); // [W/m^2.K^4] - Stefan Boltzmann Constant
+
+A=2*.05*.05; // [m^2] Area for Heat transfer i.e. both surfaces
+
+E = 11.25; //[W] Net heat to be removed by cooling air
+
+Qrad = e*stfncnstt*A*(Ts^4-Tsurr^4);
+
+//Using Eq 1.10 Total Rate of Heat Transfer Q = Q by convection + Q by radiation
+Qconv = E - Qrad;//[W]
+
+//As Qconv = h*A*(Ts-Tsurr) & h=10.9 Ws^(.8)/m^(-.8)K.V^(.8)
+
+V = [Qconv/(10.9*A*(Ts-Tsurr))]^(1/0.8);
+
+printf("\n\n Velocity of Cooling Air flowing= %.2f m/s",V);
+//END
+
+
+