summaryrefslogtreecommitdiff
path: root/530/CH9/EX9.6
diff options
context:
space:
mode:
Diffstat (limited to '530/CH9/EX9.6')
-rwxr-xr-x530/CH9/EX9.6/example_9_6.sce33
1 files changed, 33 insertions, 0 deletions
diff --git a/530/CH9/EX9.6/example_9_6.sce b/530/CH9/EX9.6/example_9_6.sce
new file mode 100755
index 000000000..849b2624c
--- /dev/null
+++ b/530/CH9/EX9.6/example_9_6.sce
@@ -0,0 +1,33 @@
+clear;
+clc;
+
+// A Textbook on HEAT TRANSFER by S P SUKHATME
+// Chapter 9
+// Mass Transfer
+
+
+// Example 9.6
+// Page 364
+printf("Example 9.6, Page 364 \n \n");
+
+l = 1; // length, [m]
+w = 0.25; // width, [m]
+T = 293 ; // Temperature, [K]
+rho_infinity = 0; // [kg/m^3]
+R = 8314; // [J/ kg K]
+
+// From Table A.2
+v = 15.06*10^-6; // [m^2/s]
+// From Table 9.2
+Dab = 2.4224*10^-5; // [m^2/s]
+Re = 2.5/v;
+Sc = v/Dab;
+// Since Re > 3*10^5, we may assume laminar boundary layer
+Sh = 0.664*Sc^(1/3)*Re^(1/2); // Sherwood number
+h = Sh*Dab;
+
+p_aw = 2339; // Saturation pressure of water at 20 degree C. [N/m^2]
+rho_aw = p_aw/(R/18*T); // [kg/m^3]
+rho_a_inf = 0 ; // since air in the free stream is dry
+m_h = h*(2*l*w)*(rho_aw-rho_infinity);
+printf("Rate of evaporation from plate = %e kg/s",m_h); \ No newline at end of file