summaryrefslogtreecommitdiff
path: root/530/CH5/EX5.5/example_5_5.sce
diff options
context:
space:
mode:
Diffstat (limited to '530/CH5/EX5.5/example_5_5.sce')
-rwxr-xr-x530/CH5/EX5.5/example_5_5.sce52
1 files changed, 52 insertions, 0 deletions
diff --git a/530/CH5/EX5.5/example_5_5.sce b/530/CH5/EX5.5/example_5_5.sce
new file mode 100755
index 000000000..d4485f0b0
--- /dev/null
+++ b/530/CH5/EX5.5/example_5_5.sce
@@ -0,0 +1,52 @@
+clear;
+clc;
+
+// A Textbook on HEAT TRANSFER by S P SUKHATME
+// Chapter 5
+// Heat Transfer by Forced Convection
+
+
+// Example 5.5
+// Page 231
+printf("Example 5.5, Page 231 \n")
+
+V = 15 ; // [m/s]
+s=0.2 ; // [m]
+T_m = (20+60)/2; // [degree C]
+// Properties at mean temp = 40 degree C
+v = 16.96*10^-6; // [m^2/s]
+rho = 1.128 ; // [kg/m^3]
+k = 0.0276; // [W/m K]
+Pr = 0.699;
+A=s^2;
+Re_L = V*0.2/v;
+// This is less than 3*10^5, hence the boundary layer may be assumed to be laminar over the entire length.
+// from eqn 4.8.19
+
+Cf = 1.328/(Re_L)^0.5
+Fd = 2*Cf*1/2*rho*A*V^2;
+
+// From eqn 5.5.10
+Nu_l = 0.664*(Pr^(1/3))*(Re_L^(1/2));
+
+h = Nu_l*k/s;
+// Therefore rate of heat transfer q is
+q = 2*A*h*(60-20);// [W]
+
+// With a turbulent boundary layer from leading edge, the drag coefficient is given by eqn 4.10.4
+Cf1 = 0.074*(Re_L)^(-0.2);
+Fd1 = 2*Cf1*1/2*rho*A*V^2; // [N]
+
+// from eqn 5.8.3 with C1 = 0
+Nu_l1 = 0.0366*(0.699^(1/3))*(Re_L^(0.8));
+
+h1 = Nu_l1*k/s; // [W/m^2 K]
+q1 = 2*A*h1*(60-20);
+
+printf("For Laminar Boundary Layer \n");
+printf("Rate of Heat transfer = %f W\n",q);
+printf("Drag force = %f N \n \n",Fd)
+
+printf("For Turbulent Boundary Layer from the leading edge \n");
+printf("Rate of Heat transfer = %f W\n",q1);
+printf("Drag force = %f N\n",Fd1)