summaryrefslogtreecommitdiff
path: root/530/CH5/EX5.3.i/example_5_3i.sce
diff options
context:
space:
mode:
Diffstat (limited to '530/CH5/EX5.3.i/example_5_3i.sce')
-rwxr-xr-x530/CH5/EX5.3.i/example_5_3i.sce42
1 files changed, 42 insertions, 0 deletions
diff --git a/530/CH5/EX5.3.i/example_5_3i.sce b/530/CH5/EX5.3.i/example_5_3i.sce
new file mode 100755
index 000000000..e45eeb248
--- /dev/null
+++ b/530/CH5/EX5.3.i/example_5_3i.sce
@@ -0,0 +1,42 @@
+clear;
+clc;
+
+// A Textbook on HEAT TRANSFER by S P SUKHATME
+// Chapter 5
+// Heat Transfer by Forced Convection
+
+
+// Example 5.3(i)
+// Page 215
+printf("Example 5.3(i), Page 215 \n\n")
+
+D = 0.015 ; // [m]
+V = 1 ; // [m/s]
+Tw = 90 ; // [degree C]
+Tmi = 50 ; // [degree C]
+Tmo = 65 ; // [degree C]
+
+// (i)
+
+// From Table A.1
+k = 0.656 ; // [W/m K]
+rho = 984.4 ; // [kg/m^3]
+v = 0.497 * 10^-6 ; // [m^2/s]
+Cp = 4178 ; // [J/kg K]
+Pr = 3.12 ;
+rho_in = 988.1 ; // [kg/m^3]
+
+m_dot = %pi*(D^2)*rho_in*V/4 ; // [kg/s]
+
+Re = 4*m_dot/(%pi*D*rho*v) ;
+
+// Using eqn 5.3.2 and 4.6.4a
+f = 0.079*(Re)^-0.25 ;
+
+Nu = (f/2)*(Re-1000)*Pr/[1+12.7*(f/2)^(1/2)*((Pr^(2/3))-1)];
+h = Nu*k/D; // [W/m^2 K]
+
+// From the energy equation, extracting the value of L
+L = m_dot*Cp*(Tmo-Tmi)*[log((Tw-Tmi)/(Tw-Tmo))]/[((Tw-Tmi)-(Tw-Tmo))*h*D*%pi]; // [m]
+
+printf("The length of tube if the exit water temperature is 65 degree C = %f m\n",L);