diff options
Diffstat (limited to '530/CH4/EX4.3/example_4_3.sce')
-rwxr-xr-x | 530/CH4/EX4.3/example_4_3.sce | 49 |
1 files changed, 49 insertions, 0 deletions
diff --git a/530/CH4/EX4.3/example_4_3.sce b/530/CH4/EX4.3/example_4_3.sce new file mode 100755 index 000000000..c40e7ade9 --- /dev/null +++ b/530/CH4/EX4.3/example_4_3.sce @@ -0,0 +1,49 @@ +clear;
+clc;
+
+// A Textbook on HEAT TRANSFER by S P SUKHATME
+// Chapter 4
+// Principles of Fluid Flow
+
+// Example 4.3
+// Page 181
+printf("Example 4.3, Page 181 \n\n")
+P = 80 * 10^3 ; // [Pa]
+L = 10 ; // [m]
+V_bar = 1.9 ; // [m/s]
+l = 0.25 ; // [m]
+b = 0.15 ; // [m]
+
+// Fully developed flow
+
+// From Table A.2, for air at ! atm pressure and 25 degree C
+rho = 1.185 ; // [kg/m^3]
+mew = 18.35 * 10^-6 ; // [kg/m s]
+
+// At 80 kPa and 25 degree C
+rho1 = rho*(80/101.3) ; // [kg/m^3]
+
+// For given duct r=(b/a)
+r = b/l;
+
+D_e = (4*l/2*b/2)/(l/2 + b/2); // [m]
+
+// From eqn 4.6.7
+
+D_l = [2/3 + 11/24*0.6*(2-0.6)]*D_e ; // [m]
+
+// Reynolds no based on D_l
+
+Re = rho1*D_l*V_bar/mew;
+printf("Reynolds no = %f \n",Re);
+
+f = 0.079*(Re^-0.25) ;
+printf("f = %f \n",f);
+
+// From eqn 4.4.17
+
+delta_P = 4*f*(L/D_l)*(rho1*(V_bar^2)/2);
+printf("Pressure drop = %f Pa \n",delta_P);
+
+power = delta_P*(V_bar*l*b)
+printf("Power required = %f W",power);
\ No newline at end of file |