diff options
Diffstat (limited to '530/CH2/EX2.3')
-rwxr-xr-x | 530/CH2/EX2.3/example_2_3.sce | 37 |
1 files changed, 37 insertions, 0 deletions
diff --git a/530/CH2/EX2.3/example_2_3.sce b/530/CH2/EX2.3/example_2_3.sce new file mode 100755 index 000000000..23f936f80 --- /dev/null +++ b/530/CH2/EX2.3/example_2_3.sce @@ -0,0 +1,37 @@ +clear;
+clc;
+
+// A Textbook on HEAT TRANSFER by S P SUKHATME
+// Chapter 2
+// Heat Conduction in Solids
+
+// Example 2.3
+// Page 31
+printf("Example 2.3, Page 31 \n\n")
+
+h_w=140; // heat transfer coefficient on water side, [W/m^2 K]
+h_o=150; // heat transfer coefficient on oil side, [W/m^2 K]
+k=30; // thermal conductivity [W/m K]
+r_o=0.01; // inner diameter of GI pipe on inside
+r_i=0.008; // outer diameter GI pipe on inside
+l=1; // [m] , per unit length
+
+// Thermal resistance of inner GI pipe
+R_inner_GI=log((r_o/r_i))/(2*%pi*k*l);
+
+
+// Thermal resistance on the oil side per unit length
+R_oilside=1/(h_o*%pi*2*r_i*l);
+
+
+// Thermal resistance on cold water side per unit length
+R_waterside=1/(h_w*%pi*2*r_o*l);
+
+
+// we see thermal resistance of inner GI pipe contributes less than 0.5 percent to the total resistance
+
+
+printf("Thermal resistance of inner GI pipe = %f K/W \n",R_inner_GI);
+printf("Thermal resistance on the oil side per unit length = %f K/W \n",R_oilside);
+printf("Thermal resistance on cold water side per unit length = %f K/W \n",R_waterside);
+printf("So, Engineer in-charge has made a bad decision");
\ No newline at end of file |