diff options
Diffstat (limited to '530/CH1/EX1.2')
-rwxr-xr-x | 530/CH1/EX1.2/example_1_2.sce | 38 |
1 files changed, 38 insertions, 0 deletions
diff --git a/530/CH1/EX1.2/example_1_2.sce b/530/CH1/EX1.2/example_1_2.sce new file mode 100755 index 000000000..4818bcfd0 --- /dev/null +++ b/530/CH1/EX1.2/example_1_2.sce @@ -0,0 +1,38 @@ +clear;
+clc;
+// Textbook of Heat Transfer(4th Edition)) , S P Sukhatme
+// Chapter 1 - Introduction
+
+//Example 1.2
+// Page 14
+printf("Example 1.2, Page 14 \n \n")
+//Solution:
+i=950; // radiation flux [W/m^2]
+A=1.5; // area [m^2]
+T_i=61; // inlet temperature
+T_o=69; // outlet temperature
+mdot=1.5; // [kg/min] , mass flow rate
+Mdot=1.5/60; // [kg/sec]
+Q_conductn=50; //[W]
+t=0.95; // transmissivity
+a=0.97;// absoptivity
+// from appendix table A.1 at 65 degree C
+C_p= 4183 ; // [J/kg K]
+// Using Equation 1.4.15 , assuming that the flow through the tubes is steady and one dimensional.
+// in this case (dW/dt)_shaft = 0
+// assuming (dW/dt)_shear is negligible
+// eqn(1.4.15) reduces to
+q=Mdot*C_p*(T_o-T_i);
+
+// let 'n' be thermal efficiency
+n=q/(i*A);
+n_percent=n*100;
+
+
+// equation 1.4.13 yields dQ/dt = 0
+Q_re_radiated=(i*A*t*a)-Q_conductn-q; // [W]
+
+
+printf("Useful heat gain rate is %f W \n",q);
+printf("Thermal efficiency is %e i.e. %f per cent \n",n,n_percent);
+printf("The rate at which energy is lost by re-radiation and convection is %f W",Q_re_radiated)
\ No newline at end of file |