summaryrefslogtreecommitdiff
path: root/509/CH9
diff options
context:
space:
mode:
Diffstat (limited to '509/CH9')
-rw-r--r--509/CH9/EX9.1/9_1.sci18
-rw-r--r--509/CH9/EX9.2/9_2.sci8
-rw-r--r--509/CH9/EX9.3/9_3.sci16
-rw-r--r--509/CH9/EX9.6/9_6.sci36
-rw-r--r--509/CH9/EX9.7/9_7.sci23
-rw-r--r--509/CH9/EX9.8/9_8.sci14
6 files changed, 115 insertions, 0 deletions
diff --git a/509/CH9/EX9.1/9_1.sci b/509/CH9/EX9.1/9_1.sci
new file mode 100644
index 000000000..644680ac9
--- /dev/null
+++ b/509/CH9/EX9.1/9_1.sci
@@ -0,0 +1,18 @@
+//Chapter 9 Example1//
+clc
+clear
+// number of strands=n//
+n=7;
+//from the diagram we get below realtions where dxy= distance between x amd y//
+k=2;//d12=d23=d34=d45=d56=d17=d27=d37=d47=d57=d67=k and assume r=1//
+k1=0.7788;//d11=d22=d33=d44=d55=d66=d77=k1//
+k2=2*2*sind(60);//d13=d24=d35=d46=k3//
+// self geometric mean distance(GMD) of srtand1=ds1//
+ds1=(k1*k*k2*2*k*k2*k*k)^(1/7);
+printf("\n Self GMD of strand1 = %.4f r\n",ds1);// by observation ds1=ds2=ds3=ds4=ds5=ds6//
+// self GMD of strand7=ds7//
+ds7=(k*k*k*k*k*k*k1)^(1/7);
+printf("\n Self GMD of strand7 = %.4f r\n",ds7);
+//equivalent radius of the conductor=ds//
+ds=(((ds1)^6)*ds7)^(1/7);
+printf("\n Equivalent radius of 7-strand conductor = %.4f r\n",ds); \ No newline at end of file
diff --git a/509/CH9/EX9.2/9_2.sci b/509/CH9/EX9.2/9_2.sci
new file mode 100644
index 000000000..c800db793
--- /dev/null
+++ b/509/CH9/EX9.2/9_2.sci
@@ -0,0 +1,8 @@
+//Chapter 9 Example 2//
+clc
+clear
+//let all the cpnductors are equally placed,so ds1=ds2=....=ds//
+// self GMD of strand1=ds1 and assuming r=1,d=1//
+k1=0.7788;//d11=d22=d33=d44=d55=d66=d77=k1//
+ds1=(k1*1*sqrt(2)*1)^(1/4);
+printf("\n Equivalent radius or self-GMD of conductors = %.3f r^1/4 d^3/4\n",ds1); \ No newline at end of file
diff --git a/509/CH9/EX9.3/9_3.sci b/509/CH9/EX9.3/9_3.sci
new file mode 100644
index 000000000..896061f90
--- /dev/null
+++ b/509/CH9/EX9.3/9_3.sci
@@ -0,0 +1,16 @@
+//Chapter 9 Example 3//
+clc
+clear
+// radius of each conductor=r,distance beween the seperation of conductors=d//
+r=2;// in cm//
+d=300;// in cms//
+// inductance of conductor=l//
+r1=0.7788*r;
+l1=2*10^-7*(log(d/r1));
+printf("\n Inductance of one conductor = %.9f H/m\n",l1);
+// to convert it into mH/km multiply by 10^6//
+// loop inductance =l//
+l=2*l1*10^6;// 10^6 conversion factor//
+printf("\n Loop Inductance = %.3f mH/km\n",l);
+
+
diff --git a/509/CH9/EX9.6/9_6.sci b/509/CH9/EX9.6/9_6.sci
new file mode 100644
index 000000000..7ac8d0bb2
--- /dev/null
+++ b/509/CH9/EX9.6/9_6.sci
@@ -0,0 +1,36 @@
+// Chapter 9 Example 6//
+clc
+clear
+// from the above diagram distnce between various conductors can be found out//
+// conductor radius =r//
+r=0.025;// in cms//
+k1=6;//k1=dac=dc1a1//
+k2=4;//k2=dac1=dca1//
+k3=10;//k3=dbb1//
+k4=sqrt((k1/2)^2+(k1/2)^2);//k4=dab=dbc=db1c1=da1b1//
+k5=sqrt((k1)^2+(k2)^2);//k5=daa1=dcc1//
+k6=sqrt((k1/2)^2+(k3-(k3-k2)/2)^2);//k6=dbc1=dba1=dcb1=dab1//
+// mutual GMD in position 1=ds1//
+gmd1=(k4*k1*k6*k2)^(1/4);
+printf("\n Mutual GMD of conductor in position1 = %.4fm \n",gmd1);
+// self-GMD in position in position1=gmr1//
+gmr1=sqrt(0.7788*r*k5);
+printf("\n Self GMD in position1 = %.3fm\n",gmr1);
+gmd2=(k4*k4*k6*k6)^(1/4);
+printf("\n Mutual GMD of conductor in position2 = %.3fm \n",gmd2);
+gmr2=sqrt(0.7788*r*k3);
+printf("\n Self GMD in position2= %.3fm\n",gmr2);
+gmd3=(k1*k6*k2*k4)^(1/4);
+gmr3=sqrt(0.7788*r*k5);
+printf("\n Mutual GMD of conductor in position3 = %.3fm\n",gmd3);
+printf("\n Self GMD in position3 = %.3fm\n",gmr3);
+// mutual gmd=dm//
+dm=(gmd1*gmd2*gmd3)^(1/3);
+printf("\n Mutual GMD = %.3fm\n",dm);
+ds=(gmr1*gmr2*gmr3)^(1/3);
+printf("\n Self GMR = %.3fm\n",ds);
+// inductance of phase a=la//
+la=2*10^-7*(log(dm/ds))*10^6;// 10^6 is conversion factor//
+printf("\n Inductance of phase a = %.3fmH/km\n",la);
+
+
diff --git a/509/CH9/EX9.7/9_7.sci b/509/CH9/EX9.7/9_7.sci
new file mode 100644
index 000000000..837a59fb6
--- /dev/null
+++ b/509/CH9/EX9.7/9_7.sci
@@ -0,0 +1,23 @@
+// Chapter 9 Example 7//
+clc
+clear
+// distance between conductors=d,diameter of conductors=d1,radius of conductor=r,height of the conductors from ground=h //
+d=4;// in m//
+d1=0.02;// in m//
+r=d1/2;
+h=8;
+// capacitance between conductors=cab//
+cab=(%pi*10^-9/(36*%pi))/(log(d/r)*(1/sqrt(1+(d/(2*h))^2)))*10^12;// to convert to pico farad multiply by 10^12 //
+printf("\n The capacitance between conductors = %.2f pF/m\n",cab);
+// capacitance between phase and neutral plane=can=cbn//
+can=2*cab;
+printf("\n The capacitance phase and neutral plane = %.2f pF/m\n",can);
+// capacitance betweem the conductors when effect of earth is ignored =cab1//
+cab1= %pi*((10^-9)/(36*%pi))*10^12/(log(d/r));
+printf("\n The capacitance between conductors when effect of ground ignored = %.2f pF/m\n",cab1);
+// charging current =ic ,frequency of operation of conductors=f,voltage which charging is done=v//
+f=50;// in Hz//
+v=33*10^3;// in V//
+w=2*%pi*f;
+ic=w*cab*10^-12*10*10^3*v;// multiplying factors to get the answer in A//
+printf("\n Charging Current = %.3f A\n",ic);
diff --git a/509/CH9/EX9.8/9_8.sci b/509/CH9/EX9.8/9_8.sci
new file mode 100644
index 000000000..7f3d2dab5
--- /dev/null
+++ b/509/CH9/EX9.8/9_8.sci
@@ -0,0 +1,14 @@
+//Chapter 9 Example 8//
+clc
+clear
+// from the diagram dab,dbc,dac are distances from each conductor to other in the transmission linr//
+dab=5;
+dbc=4;
+dac=6;
+// diameter of conductor=d,radius of each conductor=r,capacitance of phase a to neutral plane=can,equivalent distance=deq//
+d=0.025;// in m//
+deq=(dab*dbc*dac)^(1/3);
+printf("\n Equivalent distance deq = %.2f m\n",deq);
+r=d/2;
+cab=(2*%pi*(10^-9/(36*%pi))*10^12)/(log(deq/r));// 10^12 is conversion factor//
+printf("\n The capacitance of phase a to neutral plane = %.2f pF/m\n",cab);