summaryrefslogtreecommitdiff
path: root/509/CH4
diff options
context:
space:
mode:
Diffstat (limited to '509/CH4')
-rw-r--r--509/CH4/EX4.1/4_1.sci27
-rw-r--r--509/CH4/EX4.2/4_2.sci27
-rw-r--r--509/CH4/EX4.3/4_3.sci19
-rw-r--r--509/CH4/EX4.4/4_4.sci30
-rw-r--r--509/CH4/EX4.5/4_5.sci28
5 files changed, 131 insertions, 0 deletions
diff --git a/509/CH4/EX4.1/4_1.sci b/509/CH4/EX4.1/4_1.sci
new file mode 100644
index 000000000..298942225
--- /dev/null
+++ b/509/CH4/EX4.1/4_1.sci
@@ -0,0 +1,27 @@
+//Chapter 4 Example 1//
+clc
+clear
+//from table given in the problem we take the required values directly//
+//thus the values of various loads are taken as l1,l2,l3........ln//
+//total energy produced=te,average demand=ad,total time=t//
+l1=400;l2=380;l3=350;l4=300;l5=350;l6=500;l7=700;l8=750;l9=900;l10=1200;l11=1350;l12=1200;l13=1000;l14=950;l15=1250;l16=1300;l17=1400;l18=1300;l19=1500;l20=1800;l21=2000;l22=1950;l23=1000;l24=800;// in kWh//
+t=24;// in hrs//
+ad=(l1+l2+l3+l4+l5+l6+l7+l8+l9+l10+l11+l12+l13+l14+l15+l16+l17+l18+l19+l20+l21+l22+l23+l24)/t;
+printf("\n Average Demand = %.2f kW\n",ad);
+// load factod=lf,max demand=md//
+md=l21;//max demand is the highest of all individual demands//
+lf=ad/md;
+printf("\n Load factor = %.6f \n",lf);
+// loss factor=lf,peak loss at peak load=pl,average power loss=apl//
+lf=0.14;
+pl=108;// in kW//
+apl=lf*pl;
+printf("\n Average power loss = %.2f kW\n",apl);
+// annual power loss= average power loss*365//
+apl1=apl*365;
+printf("\n Annual Power loss = %.2f kW\n",apl1);
+// demand factor=df,connected demand=cd//
+cd1=2500;// in kW//
+df=md/cd1;
+printf("\n Demand Factor= %.2f \n",df);
+
diff --git a/509/CH4/EX4.2/4_2.sci b/509/CH4/EX4.2/4_2.sci
new file mode 100644
index 000000000..26e213c25
--- /dev/null
+++ b/509/CH4/EX4.2/4_2.sci
@@ -0,0 +1,27 @@
+//Chapter 4 Example2//
+clc
+clear
+//maximum demand of station=md,load factor=lf,average demand=ad//
+md=100;// in MW//
+lf=0.65;
+ad=md*lf;
+printf("\n Average Demand = %.f MW\n",ad);
+// daily enerqy produced=ed//
+ed=ad*24;
+printf("\n Daily energy produced = %.f MWh\n",ed);
+//plant utilization factor=puf,plant capacity factor=pcf,plant rated capacity=prc//
+puf=0.8;
+pcf=0.5;
+prc=ad/pcf;
+printf("\n Plant rated capacity = %.2f MW\n",prc);
+// reserve capacity=rc//
+rc=prc-md;
+printf("\n Reserve Capacity = %.2f MW\n",rc);
+// maximum energy produced=me//
+me=prc*24;// assumed to be running at all time//
+printf("\n Maximum Energy produced = %.2f MWh\n",me);
+//maximum energy produced if plant running at full load at all time=mefl//
+mefl=ed/puf;
+printf("\n Maximum energy that could be produced if running at full load = %.2f MWh\n",mefl);
+uf=md/prc;
+printf("\n Utilization factor = %.3f \n",uf);
diff --git a/509/CH4/EX4.3/4_3.sci b/509/CH4/EX4.3/4_3.sci
new file mode 100644
index 000000000..f9ee2a37a
--- /dev/null
+++ b/509/CH4/EX4.3/4_3.sci
@@ -0,0 +1,19 @@
+//Chapter 4 Example 3//
+clc
+clear
+// class demand factor=c,//
+l1=400;l2=380;l3=350;l4=300;l5=350;l6=500;l7=700;l8=750;l9=900;l10=1200;l11=1350;l12=1200;l13=1000;l14=950;l15=1250;l16=1300;l17=1400;l18=1300;l19=1500;l20=1800;l21=2000;l22=1950;l23=1000;l24=800;// in kWh//
+// class contribution factor of street load=cs, of rest of load=cr//
+sl=200;// in kW//
+md1=sl;// since max demand is street lighting load//
+cde=0;// class demand=cde//
+cs=cde/md1;
+md2=l20;// here non coincident max demand=l20//
+cde=l20;
+cr=cde/md2;
+// diversity factor=df//
+df=(md1+md2)/(cs*md1+cr*md2);
+printf("\n Diversity factor = %.3f \n",df);
+// coincidence factor=cd//
+cf=1/df;
+printf("\n Coincidence factor = %.2f\n",cf);
diff --git a/509/CH4/EX4.4/4_4.sci b/509/CH4/EX4.4/4_4.sci
new file mode 100644
index 000000000..981a99f9d
--- /dev/null
+++ b/509/CH4/EX4.4/4_4.sci
@@ -0,0 +1,30 @@
+// Chapter 4 Example 4//
+clc
+clear
+// total load the consumer=tl,power factor=pf1//
+tl=20;// in kW//
+pf1=0.8;
+// angle of power factor=a1//
+a1=acosd(pf1);// in degrees//
+pf2=0.95;// new power factor=pf2//
+a2=acosd(pf2);
+//original reactive power=r1,reactive power with power factor pf2=r2//
+r1=tl/pf1;
+r2=tl/pf2;
+// rating of the capacitor required to raise the power factor=c//
+c=r1*sind(a1)-r2*sind(a2);
+printf("\n Rating of the capacitor = %.2f kVAr\n",c);
+// power factor of the phase advancing device=pf3//
+pf3=0.1;
+a3=acosd(pf3);
+a=a1-a2;
+b=58.87;// in degrees//
+c=102.45;
+// rating of the device=r//
+r=r1*sind(a)/sind(c);
+printf("\n Rating of the device = %.2f kVA\n",r);
+
+
+
+
+
diff --git a/509/CH4/EX4.5/4_5.sci b/509/CH4/EX4.5/4_5.sci
new file mode 100644
index 000000000..8cddcb9a1
--- /dev/null
+++ b/509/CH4/EX4.5/4_5.sci
@@ -0,0 +1,28 @@
+// Chapter 4 Exapmle 5//
+clc
+clear
+// load factor of consumer=lf,monthly consumption=mc,maximum demand=md//
+lf=0.35;
+mc=504;// in kWh//
+md=mc/(lf*24*30);
+printf("\n Maximum Demand = %.2f kW\n",md);
+// rate of electricity per maximum demand=r1,per kWh=r2,tc=total cost per kWh//
+r1=180;// in Rs//
+r2=2;
+r=(r1*md)+(r2*mc);
+tc=r/mc;
+printf("\n Overall cost per kWh = %.2f rupees\n",tc);
+// consumption increased by 20%,so new consumption=mc1 //
+mc1=mc*1.20;
+lf1=lf;// load factor remains the same//
+md1=mc1/(lf*24*30);
+r=(r1*md1)+(r2*mc1);
+tc1=r/mc1;
+printf("\n Overall cost per kWh with consumption increasing by 20 percent = %.2f rupees\n",tc1);
+// load factor increased to 40%,so new maximum demand=md2//
+lf2=0.40;
+mc2=mc;
+md2=mc/(lf2*24*30);
+r=(r1*md2)+(r2*mc2);
+tc2=r/mc2;
+printf("\n Overall cost per kWh if power factor increases to 40 percent= %.2f rupees\n",tc2);