summaryrefslogtreecommitdiff
path: root/506/CH2
diff options
context:
space:
mode:
Diffstat (limited to '506/CH2')
-rwxr-xr-x506/CH2/EX2.1.a/Example2_1a.sce17
-rwxr-xr-x506/CH2/EX2.1.b/Example2_1b.sce26
-rwxr-xr-x506/CH2/EX2.1.c/Example2_1c.sce25
-rwxr-xr-x506/CH2/EX2.1.d/Example2_1d.sce26
4 files changed, 94 insertions, 0 deletions
diff --git a/506/CH2/EX2.1.a/Example2_1a.sce b/506/CH2/EX2.1.a/Example2_1a.sce
new file mode 100755
index 000000000..1df38edcb
--- /dev/null
+++ b/506/CH2/EX2.1.a/Example2_1a.sce
@@ -0,0 +1,17 @@
+clear;
+clc
+
+//Example 2a
+//Using Avogadro no. find the numerical value of concentration of atom in Germanium
+
+//Given Values
+
+Av=6.02*(10^23) //Avogadro No.
+m=72.6 //Molar mass of germanium in gm/moles
+d=5.32//density in gm/cm^3
+
+conc = (Av/m)*d //Concentration of atom in germanium
+
+disp('atom/cm^3',conc,'The concentration of germanium atom is=');
+
+//End \ No newline at end of file
diff --git a/506/CH2/EX2.1.b/Example2_1b.sce b/506/CH2/EX2.1.b/Example2_1b.sce
new file mode 100755
index 000000000..5dd520b41
--- /dev/null
+++ b/506/CH2/EX2.1.b/Example2_1b.sce
@@ -0,0 +1,26 @@
+clear;
+clc
+
+//Example 2b
+//To find the resistivity of intrinsic germanium at 300K
+
+//Given Values
+
+Av=6.02*(10^23) //Avogadro No.
+m=72.6 //Molar mass of germanium in gm/moles
+d=5.32//density in gm/cm^3
+ni=2.5*(10^13);//in cm^-3
+n=ni;
+p=ni;//n=magnitude of free electrons, p=magnitude of holes, ni=magnitude of intrinsic concentration
+q=1.6*(10^-19);//Charge of an Electron
+yn=3800;//in cm^2/V-s
+yp=1800;//in cm^2/V-s
+
+//Required Formula
+A=ni*q*(yn+yp); //Conductivity
+disp('ohm-cm^-1',A,'Conductivity is =');
+
+R =1/A //Resistivity
+disp('ohm-cm',R,'Resistivity is =');
+
+//End \ No newline at end of file
diff --git a/506/CH2/EX2.1.c/Example2_1c.sce b/506/CH2/EX2.1.c/Example2_1c.sce
new file mode 100755
index 000000000..6440cb2e6
--- /dev/null
+++ b/506/CH2/EX2.1.c/Example2_1c.sce
@@ -0,0 +1,25 @@
+clear;
+clc;
+
+disp('We know that n=p=ni where n is conc of free electron p is conc of holes and ni is conc of intrinsic carriers');
+//Given data
+//Resistivity if 1 donor atom per 10^8 germanium atoms
+Nd=4.41*(10^14);//in atoms/cm^3
+ni=2.5*(10^13);//in cm^3
+yn=3800;//in cm^2/V-s
+q=1.6*(10^-19);
+
+n=Nd;
+p=(ni^2)/Nd;
+
+disp('holes/cm^3',p,'the concentration of holes is=');
+if(n>p)
+ A=n*q*yn;//Conductivity
+ disp('ohm-cm^-1',A,'The conductivity is =');
+end
+
+R=1/A;//Resistivity
+disp('ohm-cm',R,'The resistivity is=');
+
+
+//End \ No newline at end of file
diff --git a/506/CH2/EX2.1.d/Example2_1d.sce b/506/CH2/EX2.1.d/Example2_1d.sce
new file mode 100755
index 000000000..7594c154f
--- /dev/null
+++ b/506/CH2/EX2.1.d/Example2_1d.sce
@@ -0,0 +1,26 @@
+clear;
+clc;
+
+disp('We know that n=p=ni where n is conc of free electron p is conc of holes and ni is conc of intrinsic carriers');
+//Given data
+//Ratio of Conductivities
+Nd=4.41*(10^14);//in atoms/cm^3
+ni=2.5*(10^13);//in cm^3
+yn=3800;//in cm^2/V-s
+q=1.6*(10^-19);
+
+n=Nd;
+A=n*q*yn;//Conductivity
+
+//If germanium atom were monovalent metal , ratio of conductivity to that of n-type semiconductor
+
+n=4.41*(10^22);//in electrons/cm^3
+
+disp('If germanium atom were monovalent metal');
+A1=n*q*yn;
+disp('ohm=cm^-1',A1,'the coductivity of metal is=');
+
+F=A1/A;
+disp(F,'The factor by which the coductivity of metal is higher than that of n type semiconductor is');
+
+//End \ No newline at end of file