summaryrefslogtreecommitdiff
path: root/497/CH13/EX13.4
diff options
context:
space:
mode:
Diffstat (limited to '497/CH13/EX13.4')
-rwxr-xr-x497/CH13/EX13.4/Chap13_Ex4.sce40
1 files changed, 40 insertions, 0 deletions
diff --git a/497/CH13/EX13.4/Chap13_Ex4.sce b/497/CH13/EX13.4/Chap13_Ex4.sce
new file mode 100755
index 000000000..cc1eb32b4
--- /dev/null
+++ b/497/CH13/EX13.4/Chap13_Ex4.sce
@@ -0,0 +1,40 @@
+//Kunii D., Levenspiel O., 1991. Fluidization Engineering(II Edition). Butterworth-Heinemann, MA, pp 491
+
+//Chapter-13, Example 4, Page 334
+//Title: Freeboard Heat Exchange
+//==========================================================================================================
+
+clear
+clc
+
+//INPUT
+Hf=4;//Height of freeboard in m
+uo=2.4;//Superficial gas velocity in m/s
+ho=350;//Heat transfer coefficient at the bottom of freeboard region in W/m^2 K
+hg=20;//Heat transfer coefficient in equivalent gas stream, but free of solids in W/m^2 K
+
+//CALCULATION
+zf=[0;0.5;1;1.5;2;2.5;3;3.5;Hf];//Height above the top of the dense bubbling fluidized bed
+hr=0;//Assuming heat transfer due to radiation is negligible
+a=1.5/uo;//Since decay coefficient from Fig.(7.12), a*uo=1.5s^-1
+n=length(zf);
+i=1;
+while i<=n
+ h(i)=(hr+hg)+(ho-hr-hg)*exp(-a*zf(i)/2);//Heat transfer coefficient from Eqn.(24) for zf=Hf
+ i=i+1;
+end
+hbar=(hr+hg)+2*(ho-hr-hg)*(1-exp(-a*Hf/2))/(a*Hf);//Mean heat transfer coefficient for the 4-m high freeboard from Eqn.(26)
+
+//OUTPUT
+printf('\nThe required relationship is h(W/m^2 K) vs. zf(m) as in Fig.(9a)');
+printf('\nHeight above the dense bubbling fluidized bed(m))');
+printf('\tHeat transfer coefficient(W/m^2 k)');
+i=1;
+while i<=n
+ mprintf('\n%f',zf(i));
+ mprintf('\t\t\t\t\t\t%f',h(i));
+ i=i+1;
+end
+mprintf('\n\nThe mean heat transfer coefficient for the 4-m high freeboard =%fW/m^2 K',hbar);
+
+//====================================END OF PROGRAM ====================================================== \ No newline at end of file