summaryrefslogtreecommitdiff
path: root/497/CH13/EX13.1
diff options
context:
space:
mode:
Diffstat (limited to '497/CH13/EX13.1')
-rwxr-xr-x497/CH13/EX13.1/Chap13_Ex1.sce50
1 files changed, 50 insertions, 0 deletions
diff --git a/497/CH13/EX13.1/Chap13_Ex1.sce b/497/CH13/EX13.1/Chap13_Ex1.sce
new file mode 100755
index 000000000..d27b58919
--- /dev/null
+++ b/497/CH13/EX13.1/Chap13_Ex1.sce
@@ -0,0 +1,50 @@
+//Kunii D., Levenspiel O., 1991. Fluidization Engineering(II Edition). Butterworth-Heinemann, MA, pp 491
+
+//Chapter-13, Example 1, Page 331
+//Title: h on a Horizontal Tube Bank
+//==========================================================================================================
+
+clear
+clc
+
+//INPUT
+dp=57;//Particle size in micrometer
+rhos=940;//Density of solids in kg/m^3
+Cps=828;//Specific heat capacity of the solid in J/kg K
+ks=0.20;//Thermal conductivity of solids in W/m k
+kg=0.035;//Thermal concuctivity of gas in W/m k
+umf=0.006;//Velocity at minimum fluidization condition in m/s
+ephsilonmf=0.476;//Void fraction at minimum fluidization condition
+do1=0.0254;//Outside diameter of tube in m
+L=1;
+uo=[0.05;0.1;0.2;0.35];//Superficial gas velocity in m/s
+nw=[2;3.1;3.4;3.5];//Bubble frequency in s^-1
+g=9.81;//Acceleration due to gravity in square m/s^2
+
+
+//CALCULATION
+dte=4*do1*L/2*L;//Hydraulic diameter from Eqn.(6.13)
+db=(1+1.5)*0.5*dte;//Rise velocity of the bubble
+ubr=0.711*(g*db)^0.5;//Rise velocity of bubble from Eqn.(6.7)
+phib=0.19;//From Fig.(15) for ks/kg=5.7
+ke=ephsilonmf*kg+(1-ephsilonmf)*ks*[1/((phib*(ks/kg))+(2/3))];//Effective thermal conductivity of bed from Eqn.(3)
+n=length(uo);
+i=1;
+while i<=n
+ ub(i)=uo(i)-umf+ubr;//Velocity of bubbles in bubbling beds in Eqn.(6.8)
+ delta(i)=uo(i)/ub(i);//Fraction of bed in bubbles from Eqn.(6.29)
+ h(i)=1.13*[ke*rhos*(1-ephsilonmf)*Cps*nw(i)*(1-delta(i))]^0.5;//Heat transfer coefficinet from Eqn.(18)
+ i=i+1;
+end
+
+//OUTPUT
+printf('\nSuperficial gas velocity(m/s)');
+printf('\tHeat transfer coefficient(W/m^2 k)');
+i=1;
+while i<=n
+ mprintf('\n%f',uo(i));
+ mprintf('\t\t\t%f',h(i));
+ i=i+1;
+end
+
+//====================================END OF PROGRAM ====================================================== \ No newline at end of file