summaryrefslogtreecommitdiff
path: root/49/CH4/EX4.10/ex10.sce
diff options
context:
space:
mode:
Diffstat (limited to '49/CH4/EX4.10/ex10.sce')
-rwxr-xr-x49/CH4/EX4.10/ex10.sce31
1 files changed, 31 insertions, 0 deletions
diff --git a/49/CH4/EX4.10/ex10.sce b/49/CH4/EX4.10/ex10.sce
new file mode 100755
index 000000000..f36eda636
--- /dev/null
+++ b/49/CH4/EX4.10/ex10.sce
@@ -0,0 +1,31 @@
+//CHAPTER 4_ Motion and Dimensional Measurement
+//Caption : Seismic pickup
+// Example 10// Page 238
+disp("r1=0.2;")
+disp("r2=0.6 ")
+disp("tou=0.05")
+r1=0.2;
+r2=0.6 // given
+tou=0.05; //given
+wn=1600 //(' enter the natural frequency=:')
+disp("H1=1/sqrt((1-r1^2)^2+(2*tou*r1)^2)")
+H1=1/sqrt((1-r1^2)^2+(2*tou*r1)^2);
+H1_phase=-atan((2*tou*r1)/(1-r1^2))*360/(2*%pi);
+disp("H1_phase=-atan((2*tou*r1)/(1-r1^2))*360/(2*%pi)")
+H2=1/sqrt((1-r2^2)^2+(2*tou*r2)^2);
+H2_phase=-atan((2*tou*r2)/(1-r2^2))*360/(2*%pi);
+//In order to obtain the amplitude of relative displacement, transfer function must be multiplied by amplitude of the input signal and the static sensitivty of the pickup (1/wn^2) for each frequency
+//amp1=H1/wn^2;
+//amp2=H2/wn^2;
+tou2=0.6; // given
+H11=1/sqrt((1-r1^2)^2+(2*tou2*r1)^2);
+H11_phase=-atan((2*tou2*r1)/(1-r1^2))*360/(2*%pi);
+H22=1/sqrt((1-r2^2)^2+(2*tou2*r2)^2);
+H22_phase=-atan((2*tou2*r2)/(1-r2^2))*360/(2*%pi);
+//amp11=H11/wn^2;
+//amp22=H22/wn^2;
+printf('the magnitude of the transfer function will be %fd and %fd while the phases will shift by %fd and %fd for tou=0.05\n',H1,H2,H1_phase,H2_phase)
+printf('the magnitude of the transfer function will be %fd and %fd while the phases will shift by %fd and %fd for tou=0.6\n',H11,H22,H11_phase,H22_phase)
+
+
+