diff options
Diffstat (limited to '479/CH14')
-rwxr-xr-x | 479/CH14/EX14.12/Example_14_12.sce | 72 | ||||
-rwxr-xr-x | 479/CH14/EX14.6/Example_14_6.sce | 124 |
2 files changed, 98 insertions, 98 deletions
diff --git a/479/CH14/EX14.12/Example_14_12.sce b/479/CH14/EX14.12/Example_14_12.sce index da72bbb33..def054a07 100755 --- a/479/CH14/EX14.12/Example_14_12.sce +++ b/479/CH14/EX14.12/Example_14_12.sce @@ -1,37 +1,37 @@ -//Chemical Engineering Thermodynamics
-//Chapter 14
-//Thermodynamics of Chemical Reactions
-
-//Example 14.12
-clear;
-clc;
-
-//Given
-//C + 2H2 - CH4
-//Basis: 1 Kgmole of C fed
-T = 1000;//Temperature in K
-P1 = 2;//Pressure in atm
-del_F = 4580;//Standard free energy in Kcal/Kgmole
-
-
-//To Calculate the maximum CH4 concentration under the condition of 2 atm and the quantity of methane obtained if pressure is 1 atm
-Ka = %e^(-del_F/(R*T));//Equilibrium constant
-//In relation (d) (page no 339) p_H2 = p (say)
-p = poly(0,'p');
-q = Ka*(p^2)+p-P1;
-r = roots(q);
-p_H2 = r(2);//partial pressure of H2
-p_CH4 = P1-p_H2;//partial pressure of CH4
-X_H2 = p_H2*100/P1;//mole percent of H2
-X_CH4 = p_CH4*100/P1;//mole percent of CH4
-mprintf('Under the conditions of 2 atm and 1000 K,the maximum CH4 concentration is %f percent and further increase is not pssible',X_CH4);
-//Now.pressure has become
-P2 = 1;//in atm
-q = Ka*(p^2)+p-P2;
-r = roots(q);
-p_H2 = r(2);//partial pressure of H2
-p_CH4 = P2-p_H2;//partial pressure of CH4
-X_H2 = p_H2*100/P2;//mole percent of H2
-X_CH4 = p_CH4*100/P2;//mole percent of CH4
-mprintf('\n\n Under the conditions of 1 atm and 1000 K,Methane = %f percent and Hydrogen = %f percent',X_CH4,X_H2);
+//Chemical Engineering Thermodynamics +//Chapter 14 +//Thermodynamics of Chemical Reactions + +//Example 14.12 +clear; +clc; + +//Given +//C + 2H2 - CH4 +//Basis: 1 Kgmole of C fed +T = 1000;//Temperature in K +P1 = 2;//Pressure in atm +del_F = 4580;//Standard free energy in Kcal/Kgmole +R = 1.98; + +//To Calculate the maximum CH4 concentration under the condition of 2 atm and the quantity of methane obtained if pressure is 1 atm +Ka = %e^(-del_F/(R*T));//Equilibrium constant +//In relation (d) (page no 339) p_H2 = p (say) +p = poly(0,'p'); +q = Ka*(p^2)+p-P1; +r = roots(q); +p_H2 = r(2);//partial pressure of H2 +p_CH4 = P1-p_H2;//partial pressure of CH4 +X_H2 = p_H2*100/P1;//mole percent of H2 +X_CH4 = p_CH4*100/P1;//mole percent of CH4 +mprintf('Under the conditions of 2 atm and 1000 K,the maximum CH4 concentration is %f percent and further increase is not pssible',X_CH4); +//Now.pressure has become +P2 = 1;//in atm +q = Ka*(p^2)+p-P2; +r = roots(q); +p_H2 = r(2);//partial pressure of H2 +p_CH4 = P2-p_H2;//partial pressure of CH4 +X_H2 = p_H2*100/P2;//mole percent of H2 +X_CH4 = p_CH4*100/P2;//mole percent of CH4 +mprintf('\n\n Under the conditions of 1 atm and 1000 K,Methane = %f percent and Hydrogen = %f percent',X_CH4,X_H2); //end
\ No newline at end of file diff --git a/479/CH14/EX14.6/Example_14_6.sce b/479/CH14/EX14.6/Example_14_6.sce index e81c94b47..f7ac46d6d 100755 --- a/479/CH14/EX14.6/Example_14_6.sce +++ b/479/CH14/EX14.6/Example_14_6.sce @@ -1,63 +1,63 @@ -//Chemical Engineering Thermodynamics
-//Chapter 14
-//Thermodynamics of Chemical Reactions
-
-//Example 14.6
-clear;
-clc;
-
-//Given
-//SO2 + (1/2)O2 - SO3
-//Basis: 1 Kgmole of SO2
-n_SO2 = 1;// SO2 fed in Kgmole
-//From table 14.1 (page no 301)
-//alpha values for the following components are given as
-a_SO2 = 7.116;
-a_O2 = 6.148;
-a_SO3 = 6.077;
-//beta values for the following components are given as
-b_SO2 = 9.512*10^-3;
-b_O2 = 3.102*10^-3;
-b_SO3 = 25.537*10^-3;
-//Standard enthalpy of the following components at 25 deg cel in Kcal/Kgmole are given as
-H_SO2 -70960;
-H_O2 = 0;
-H_SO3 = -94450;
-//Standard free energy of the following components at 25 deg cel in Kcal/Kgmole K are given as
-F_SO2 = -71680;
-F_O2 = 0;
-F_SO3 = -88590;
-n_O2 = n_SO2;//O2 fed in Kgmole; since 50 mole percent mixture of SO2 & O2 is fed
-n_SO3 = n_SO2;//SO3 formed in Kgmole
-n_O2_e = n_O2-(n_O2/2);//Kgmoles of O2 in exit gas
-n_O2_r = n_O2/2;//Kgmoles of O2 reacted
-R = 1.98;//gas constant in Kcal/Kgmole K
-
-//To show the variation of the standard heats of reaction with temperature and the equilibrium constant with temperature graphically in the given temperature range
-//(i)Variation of the standard heats of reaction with temperature
-del_H = (n_SO3*H_SO3)-(n_O2_r*H_O2)-(n_SO2*H_SO2);// in Kcal/Kgmole
-del_F = (n_SO3*F_SO3)-(n_O2_r*F_O2)-(n_SO2*F_SO2);// in Kcal/Kgmole
-//From equation 14.10 (page no 301)
-del_a = (n_SO3*a_SO3)-(n_O2_r*a_O2)-(n_SO2*a_SO2);
-del_b = (n_SO3*b_SO3)-(n_O2_r*b_O2)-(n_SO2*b_SO2);
-//In equation 14.11 (page no 302), substituting del_H at
-T = 298;//in deg cel
-I = del_H - del_a*T - (del_b*(T^2)/2);// integrating constant
-mprintf('(i)The standard heat of reaction at any tempperature can be calculated by the relation:');
-mprintf('\n del_Ht = %fT + %fT^2 %f',del_a,del_b/2,I);
-
-//(ii)Variation of the equilibrium constant with temperature
-//K1 = lnKa (say)
-K1 = -del_F/(R*T);
-//From equation 14.42 (page no 316); M1 = M/R (say)
-M1 = K1-(del_a/R)*log(T)-(del_b/(2*R))*T+(I/(T*R));
-//Let us assume the temperature in the range 800K to 1500K as
-Ta = [700 800 825 850 900 1000 1100 1300 1500];
-for i = 1:9
- Ka(i) = %e^((del_a/R)*log(Ta(i))+(del_b*Ta(i)/(2*R))-(I/(Ta(i)*R))+M1);
-end
-clf;
-plot(Ta,Ka);
-xtitle(" ","Temperature in K","equilibrium constant K");
-mprintf('\n\n(ii)From the graph it can be seen that as temperature increases Ka decreases exponentially,so the reaction is exothermic.');
+//Chemical Engineering Thermodynamics +//Chapter 14 +//Thermodynamics of Chemical Reactions + +//Example 14.6 +clear; +clc; + +//Given +//SO2 + (1/2)O2 - SO3 +//Basis: 1 Kgmole of SO2 +n_SO2 = 1;// SO2 fed in Kgmole +//From table 14.1 (page no 301) +//alpha values for the following components are given as +a_SO2 = 7.116; +a_O2 = 6.148; +a_SO3 = 6.077; +//beta values for the following components are given as +b_SO2 = 9.512*10^-3; +b_O2 = 3.102*10^-3; +b_SO3 = 25.537*10^-3; +//Standard enthalpy of the following components at 25 deg cel in Kcal/Kgmole are given as +H_SO2 =-70960; +H_O2 = 0; +H_SO3 = -94450; +//Standard free energy of the following components at 25 deg cel in Kcal/Kgmole K are given as +F_SO2 = -71680; +F_O2 = 0; +F_SO3 = -88590; +n_O2 = n_SO2;//O2 fed in Kgmole; since 50 mole percent mixture of SO2 & O2 is fed +n_SO3 = n_SO2;//SO3 formed in Kgmole +n_O2_e = n_O2-(n_O2/2);//Kgmoles of O2 in exit gas +n_O2_r = n_O2/2;//Kgmoles of O2 reacted +R = 1.98;//gas constant in Kcal/Kgmole K + +//To show the variation of the standard heats of reaction with temperature and the equilibrium constant with temperature graphically in the given temperature range +//(i)Variation of the standard heats of reaction with temperature +del_H = (n_SO3*H_SO3)-(n_O2_r*H_O2)-(n_SO2*H_SO2);// in Kcal/Kgmole +del_F = (n_SO3*F_SO3)-(n_O2_r*F_O2)-(n_SO2*F_SO2);// in Kcal/Kgmole +//From equation 14.10 (page no 301) +del_a = (n_SO3*a_SO3)-(n_O2_r*a_O2)-(n_SO2*a_SO2); +del_b = (n_SO3*b_SO3)-(n_O2_r*b_O2)-(n_SO2*b_SO2); +//In equation 14.11 (page no 302), substituting del_H at +T = 298;//in deg cel +I = del_H - del_a*T - (del_b*(T^2)/2);// integrating constant +mprintf('(i)The standard heat of reaction at any tempperature can be calculated by the relation:'); +mprintf('\n del_Ht = %fT + %fT^2 %f',del_a,del_b/2,I); + +//(ii)Variation of the equilibrium constant with temperature +//K1 = lnKa (say) +K1 = -del_F/(R*T); +//From equation 14.42 (page no 316); M1 = M/R (say) +M1 = K1-(del_a/R)*log(T)-(del_b/(2*R))*T+(I/(T*R)); +//Let us assume the temperature in the range 800K to 1500K as +Ta = [700 800 825 850 900 1000 1100 1300 1500]; +for i = 1:9 + Ka(i) = %e^((del_a/R)*log(Ta(i))+(del_b*Ta(i)/(2*R))-(I/(Ta(i)*R))+M1); +end +clf; +plot(Ta,Ka); +xtitle(" ","Temperature in K","equilibrium constant K"); +mprintf('\n\n(ii)From the graph it can be seen that as temperature increases Ka decreases exponentially,so the reaction is exothermic.'); //end
\ No newline at end of file |