summaryrefslogtreecommitdiff
path: root/479/CH10
diff options
context:
space:
mode:
Diffstat (limited to '479/CH10')
-rwxr-xr-x479/CH10/EX10.1/Example_10_1.sce33
-rwxr-xr-x479/CH10/EX10.2/Example_10_2.sce24
-rwxr-xr-x479/CH10/EX10.2/Example_10_2.txt3
-rwxr-xr-x479/CH10/EX10.3/Example_10_3.sce25
-rwxr-xr-x479/CH10/EX10.4/Example_10_4.sce22
-rwxr-xr-x479/CH10/EX10.5/Example_10_5.sce22
6 files changed, 129 insertions, 0 deletions
diff --git a/479/CH10/EX10.1/Example_10_1.sce b/479/CH10/EX10.1/Example_10_1.sce
new file mode 100755
index 000000000..c18726e16
--- /dev/null
+++ b/479/CH10/EX10.1/Example_10_1.sce
@@ -0,0 +1,33 @@
+//Chemical Engineering Thermodynamics
+//Chapter 10
+//Compressor
+//Example 10.1
+clear;
+clc;
+
+//Given
+V1 = 2.7;//flow rate of CO2 in cubic meter/min
+T1 = 273-51;//temperature in K
+P1 = 1;//initial pressure in Kgf/sq cm
+P2 = 10;//final pressure in Kgf/sq cm
+y = 1.3;//gamma
+v1 = 0.41;//specific volume in cubic meter/Kg
+H1 = 158.7;// initial enthalpy in Kcal/Kg
+H2 = 188.7;//final enthalpy in Kcal/Kg
+
+//process is isentropic
+//To calculate the horsepower required
+
+//(i)Assuming ideal gas behaviour
+//From equation 10.3 (page no 189)
+W = (y/(y-1))*(P1*1.03*10^4*V1)*(1-(P2/P1)^((y-1)/y));//work in m Kgf/min
+W1 = W/4500;
+mprintf('(i)The horsepower required is %f hp',W1);
+
+//(ii)Using the given data for CO2
+//From equation 10.2 (page no 189)
+W = -(H2 - H1);//work in Kcal/Kg
+M = V1/v1;//Mass rate of gas in Kg/min
+W1 = W*M*(427/4500);
+mprintf('\n (ii)Compressor work is %f hp',W1);
+//end \ No newline at end of file
diff --git a/479/CH10/EX10.2/Example_10_2.sce b/479/CH10/EX10.2/Example_10_2.sce
new file mode 100755
index 000000000..54e541a61
--- /dev/null
+++ b/479/CH10/EX10.2/Example_10_2.sce
@@ -0,0 +1,24 @@
+//Chemical Engineering Thermodynamics
+//Chapter 10
+//Compressor
+//Example 10.2
+clear;
+clc;
+
+//Given
+P1 = 1;//Initial pressure in atm
+P2 = 29;//Final pressure in atm
+C = 0.05;//Clearance
+y = 1.4;//gamma of air
+
+//To calculate the volumetric efficiency and the maximum possible pressure that can be attained in a single stage
+//(i)Calulation of volumetric efficiency
+//From equation 10.11 (page no 194)
+V_E = 1+C-C*(P2/P1)^(1/y);
+mprintf('(i)Volumetric efficiency is %f percent',V_E*100);
+
+//(ii)Calculation of maximum pressure
+V_E = 0;//Minimum efficiency
+P2 = P1*(((1+C-V_E)/C)^y);
+mprintf('\n (ii)The maximum possible pressure attained is %f atm',P2);
+//end \ No newline at end of file
diff --git a/479/CH10/EX10.2/Example_10_2.txt b/479/CH10/EX10.2/Example_10_2.txt
new file mode 100755
index 000000000..bac31c4c3
--- /dev/null
+++ b/479/CH10/EX10.2/Example_10_2.txt
@@ -0,0 +1,3 @@
+For example 10.2 (ii),
+The answer given in the book is 79 atm but i am getting 70.97 atm.
+There might be some calculation mistake in the book.
diff --git a/479/CH10/EX10.3/Example_10_3.sce b/479/CH10/EX10.3/Example_10_3.sce
new file mode 100755
index 000000000..ebcc43c8b
--- /dev/null
+++ b/479/CH10/EX10.3/Example_10_3.sce
@@ -0,0 +1,25 @@
+//Chemical Engineering Thermodynamics
+//Chapter 10
+//Compressor
+
+//Example 10.3
+clear;
+clc;
+
+//Given
+V_d = 5.15;//displacement volume in cubic meter/min
+P1 = 1;//initial pressure in Kgf/sq cm
+P2 = 8.5;//final pressure in Kgf/sq cm
+C = 0.06;//Clearance
+M_E = 0.8;//Mechenical efficiency
+y = 1.31;//gamma
+
+//To calculate the capacity and the actual horse power of the compressor
+v1 = V_d*(1+C-(C*((P2/P1)^(1/y))));
+mprintf('The capacity of the copressor is %f cubic meter/min',v1);
+//From equation 10.6 (page no 192)
+W = (y/(y-1))*(P1*1*10^4*v1)*(1-(P2/P1)^((y-1)/y));//work in Kgf/min
+W1 = W/4500;//work in hp
+W2 = W1/M_E;
+mprintf('\n The actual horse power of the compressor is %f hp',W2);
+//end \ No newline at end of file
diff --git a/479/CH10/EX10.4/Example_10_4.sce b/479/CH10/EX10.4/Example_10_4.sce
new file mode 100755
index 000000000..644f2d286
--- /dev/null
+++ b/479/CH10/EX10.4/Example_10_4.sce
@@ -0,0 +1,22 @@
+//Chemical Engineering Thermodynamics
+//Chapter 10
+//Compressor
+
+//Example 10.4
+clear;
+clc;
+
+//Given
+P1 = 1;//Initial pressure in Kgf/sq cm
+Pn = 13;//Final pressure in Kgf/sq cm
+V1 =27;//flow rate of gas in cubic meter/min
+y = 1.6;//gamma of the gas
+n = [1 2 3 4 7 10];//number of stages
+mprintf('No of stages Horse power in hp');
+//To Calculate the theoretical horse power required
+for i = 1:6
+ W(i) = n(i)*(y/(y-1))*((P1*10^4)/4500)*V1*(1-(Pn/P1)^((y-1)/(n(i)*y)));
+ mprintf('\n %d',n(i));
+ mprintf(' %f',-W(i))
+end
+//end
diff --git a/479/CH10/EX10.5/Example_10_5.sce b/479/CH10/EX10.5/Example_10_5.sce
new file mode 100755
index 000000000..3bc48b05a
--- /dev/null
+++ b/479/CH10/EX10.5/Example_10_5.sce
@@ -0,0 +1,22 @@
+//Chemical Engineering Thermodynamics
+//Chapter 10
+//Compressor
+
+//Example 10.5
+clear;
+clc;
+
+//Given
+P1 = 1;//Initial pressure in Kgf/sq cm
+P4 = 200;//Final pressure in Kgf/sq cm
+n = 4;//no of stages
+
+//To find out the presure between stages
+r = (P4/P1)^(1/n);//Compression ratio
+P2 = r*P1;
+mprintf('The pressure after 1st stage is %f Kgf/sq cm',P2);
+P3 = r*P2;
+mprintf('\n The pressure after 2nd stage is %f Kgf/sq cm',P3);
+P4 = r*P3;
+mprintf('\n The pressure after 3rd stage is %f Kgf/sq cm',P4);
+//end \ No newline at end of file