diff options
Diffstat (limited to '409/CH23/EX23.5/Example23_5.sce')
-rwxr-xr-x | 409/CH23/EX23.5/Example23_5.sce | 58 |
1 files changed, 58 insertions, 0 deletions
diff --git a/409/CH23/EX23.5/Example23_5.sce b/409/CH23/EX23.5/Example23_5.sce new file mode 100755 index 000000000..7ebf35dee --- /dev/null +++ b/409/CH23/EX23.5/Example23_5.sce @@ -0,0 +1,58 @@ +clear ; +clc; +// Example 23.5 +printf('Example 23.5\n\n'); +//page no. 695 +// Solution + +// Basis : 1 g mol of gas +//Given +T1 = 550 ;// Initial temperature - [degree F] +T2 = 200 ;// Final temperature - [degree F] +CO2 = 9.2/100 ;// Mole fraction +CO = 1.5/100 ;// Mole fraction +O2 = 7.3/100 ;// Mole fraction +N2 = 82.0/100 ;//Mole fraction + +// Additional data needed : +// Coefficients in the heat capacity equations +a_N2 = 6.895;// constant +b_N2 = 0.7624*10^-3;// coefficient of T +c_N2 = -0.7009*10^-7;// coefficient of square T +a_O2 = 7.104 ;// constant +b_O2 = (0.7851*10^-3);// coefficient of T +c_O2 = (-0.5528*10^-7); // coefficient of square T +a_CO2 = 8.448;// constant +b_CO2 = 5.757*10^-3;// coefficient of T +c_CO2 = -21.59*10^-7;// coefficient of square T +d_CO2 = 3.059*10^-10;// coefficient of cubic T +a_CO = 6.865 ;// constant +b_CO = 0.8024*10^-3;// coefficient of T +c_CO = -0.7367*10^-7; // coefficient of square T + +// New coefficients after multiplying mole fraction of each component +a1_N2 = 6.895*N2 ;// constant +b1_N2 = N2*0.7624*10^-3; // coefficient of T +c1_N2 = (-0.7009*10^-7)*N2; // coefficient of square T +a1_O2 = 7.104*O2 ;// constant +b1_O2 = (0.7851*10^-3)*O2;// coefficient of T +c1_O2 = (-0.5528*10^-7)*O2; // coefficient of square T +a1_CO2 = 8.448*CO2;// constant +b1_CO2 = (5.757*10^-3)*CO2;// coefficient of T +c1_CO2 = (-21.59*10^-7)*CO2; // coefficient of square T +d1_CO2 = (3.059*10^-10)*CO2; // coefficient of cubic T +a1_CO = 6.865*CO;// constant +b1_CO = (0.8024*10^-3)*CO;// coefficient of T +c1_CO = (-0.7367*10^-7)*CO; // coefficient of square T + +// Get net coefficients of T , square T and cubic T by adding them +a_net = a1_N2+a1_CO2+a1_CO+a1_O2; //Net constant +b_net = b1_N2+b1_CO2+b1_CO+b1_O2; //Net coefficient of T +c_net = c1_N2+c1_CO2+c1_CO+c1_O2 ;//Net coefficient of square T +d_net = d1_CO2;//Net coefficient of cubic T + +//Cp_net = a_net + b_net*T + c_net*T^2 + d_net*T^3 +// Integrate Cp_net*dT over given temperature range to get change in enthalpy +del_H = integrate('(a_net )+( b_net*T) + (c_net*(T^2)) + (d_net*(T^3))','T',T1,T2); // Change in enthalpy of gas over given range-[Btu/lb mol gas] + +printf('\n Change in enthalpy of gas over given range is %.0f Btu/lb mol gas .\n ',del_H);
\ No newline at end of file |