diff options
Diffstat (limited to '409/CH21')
-rwxr-xr-x | 409/CH21/EX21.1/Example21_1.sce | 25 | ||||
-rwxr-xr-x | 409/CH21/EX21.2/Example21_2.sce | 18 | ||||
-rwxr-xr-x | 409/CH21/EX21.3/Example21_3.sce | 14 | ||||
-rwxr-xr-x | 409/CH21/EX21.4/Example21_4.sce | 18 | ||||
-rwxr-xr-x | 409/CH21/EX21.5/Example21_5.sce | 8 | ||||
-rwxr-xr-x | 409/CH21/EX21.6/Example21_6.sce | 8 | ||||
-rwxr-xr-x | 409/CH21/EX21.7/Example21_7.sce | 18 |
7 files changed, 109 insertions, 0 deletions
diff --git a/409/CH21/EX21.1/Example21_1.sce b/409/CH21/EX21.1/Example21_1.sce new file mode 100755 index 000000000..6d8bdefe1 --- /dev/null +++ b/409/CH21/EX21.1/Example21_1.sce @@ -0,0 +1,25 @@ +clear ; +clc; +// Example 21.1 +printf('Example 21.1\n\n'); +//page no. 616 +// Solution Fig. E21.1a and E21.1b + +//Given +V1 = 0.1 ;// Volume of gas initially -[cubic metres] +V2 = 0.2 ;// Volume of gas finally -[cubic metres] +T1 = 300 ;// Temperature of gas initially -[K] +P1 = 200 ;// Pressure of gas finally -[kPa] +R = 8.314 ;// Universal gas constant +n = (P1*V1)/(T1*R) ;// Moles of gas taken-[kg mol] +//You are asked to calculate work by eqn. 21.1 , but you do not know the F(force) exerted by gas , so write F = P.A, multiply divide A and eqn 21.1 reduces to W= integate(P.dv) + +//(a) +// Isobaric process see fig E21.1b to see the path followed +W= integrate('-(P1)','V',V1,V2) ;// Work done by gas on piston -[kJ] +printf('\n (a)Work done by gas on piston for isobaric process is %.0f kJ .\n ',W); + +//(b) +// Isobaric process see fig E21.1b to see the path followed +W= integrate('-(T1*R*n/V)','V',V1,V2) ;// Work done by gas on piston -[kJ] +printf('(b)Work done by gas on piston for isothermal process is %.2f kJ .\n ',W);
\ No newline at end of file diff --git a/409/CH21/EX21.2/Example21_2.sce b/409/CH21/EX21.2/Example21_2.sce new file mode 100755 index 000000000..b9c4d4af4 --- /dev/null +++ b/409/CH21/EX21.2/Example21_2.sce @@ -0,0 +1,18 @@ +clear ; +clc; +// Example 21.2 +printf('Example 21.2\n\n'); +//page no. 624 +// Solution + +//Given +id = 3 ;// Internal diameter of tube-[cm] +Vf = 0.001 ;// Volume flow rate of water in tube-[cubic meter/s] +rho = 1000 ;// Assumed density of water-[kg/cubic meter] + +rad = id/2 ;// Radius of tube -[ cm] +a = 3.14*rad^2 ;// Area of flow of tube -[squqre centimeter] +v = Vf*(100)^2/a ;// Velocity of water in tube - [m/s] +KE = v^2/2 ;// Specific(mass=1kg) kinetic energy of water in tube -[J/kg] + +printf('Specific kinetic energy of water in tube is %.2f J/kg .\n ',KE);
\ No newline at end of file diff --git a/409/CH21/EX21.3/Example21_3.sce b/409/CH21/EX21.3/Example21_3.sce new file mode 100755 index 000000000..5a3e2fb7b --- /dev/null +++ b/409/CH21/EX21.3/Example21_3.sce @@ -0,0 +1,14 @@ +clear ; +clc; +// Example 21.3 +printf('Example 21.3\n\n'); +//page no. 626 +// Solution + +//Given +// Let water level in first reservoir be the reference plane +h = 40 ;// Difference of water-[ft] +g = 32.2 ;// acceleration due to gravity-[ft/square second] +PE=g*h/(32.2*778.2) ;//// Specific(mass=1kg) potential energy of water -[Btu/lbm] + +printf('Specific potential energy of water is %.4f Btu/lbm .\n ',PE);
\ No newline at end of file diff --git a/409/CH21/EX21.4/Example21_4.sce b/409/CH21/EX21.4/Example21_4.sce new file mode 100755 index 000000000..1e4c13940 --- /dev/null +++ b/409/CH21/EX21.4/Example21_4.sce @@ -0,0 +1,18 @@ +clear ; +clc; +// Example 21.4 +printf('Example 21.4\n\n'); +//page no. 629 +// Solution + +//Given +//Constant volume process +mol_air = 10 ;// Moles of air-[kg mol] +T1 = 60+273 ;// Initial temperature of air-[K] +T2 = 30+273 ;// final temperature of air-[K] +// Additional data needed +Cv = 2.1*10^4 ; // Specific heat capacity of air at constant volume-[J/(kg mol*C)] + +// Use eqn. 21.6 for del_U +del_U = integrate('mol_air*Cv','T',T1,T2) ;//Change in internal energy-[J] +printf('\nChange in internal energy is %.1e J .\n ',del_U);
\ No newline at end of file diff --git a/409/CH21/EX21.5/Example21_5.sce b/409/CH21/EX21.5/Example21_5.sce new file mode 100755 index 000000000..42495a84d --- /dev/null +++ b/409/CH21/EX21.5/Example21_5.sce @@ -0,0 +1,8 @@ +clear ; +clc; +// Example 21.5 +printf('Example 21.5\n\n'); +//page no. 629 +// Solution + +printf('\n As we know that internal energy(U) is state variable , therefore change in internal energy(del_U) depends only on initial and final state , independent of the path taken for process.\n Hence, change in internal energy for both paths A and B are same. ');
\ No newline at end of file diff --git a/409/CH21/EX21.6/Example21_6.sce b/409/CH21/EX21.6/Example21_6.sce new file mode 100755 index 000000000..8e3b9ae18 --- /dev/null +++ b/409/CH21/EX21.6/Example21_6.sce @@ -0,0 +1,8 @@ +clear ; +clc; +// Example 21.6 +printf('Example 21.6\n\n'); +//page no. 632 +// Solution + +printf('\n As we know that enthalpy(H) is state variable , therefore change in enthalpy(del_H) depends only on initial and final state , independent of the path taken for process.\n Hence, change in enthalpy for both paths A-B-D and A-C-D are same. ');
\ No newline at end of file diff --git a/409/CH21/EX21.7/Example21_7.sce b/409/CH21/EX21.7/Example21_7.sce new file mode 100755 index 000000000..44d32a00d --- /dev/null +++ b/409/CH21/EX21.7/Example21_7.sce @@ -0,0 +1,18 @@ +clear; +clc; +// Example 21.7 +printf('Example 21.7\n\n'); +//page no. 633 +// Solution + +//Given +//Constant pressure process +mol_air = 10 ;// Moles of air-[kg mol] +T1 = 60+273 ;// Initial temperature of air-[K] +T2 = 30+273 ;// final temperature of air-[K] +// Additional data needed +Cp = 2.9*10^4 ;// Specific heat capacity of air at constant pressure-[J/(kg mol*C)] + +// Use eqn. 21.11 for del_H +del_H = integrate('mol_air*Cp','T',T1,T2) ;//Change in enthalpy-[J] +printf('\nChange in enthalpy is %.1e J .\n ',del_H);
\ No newline at end of file |