summaryrefslogtreecommitdiff
path: root/409/CH13
diff options
context:
space:
mode:
Diffstat (limited to '409/CH13')
-rwxr-xr-x409/CH13/EX13.1/Example13_1.sce12
-rwxr-xr-x409/CH13/EX13.2/Example13_2.sce12
-rwxr-xr-x409/CH13/EX13.3/Example13_3.sce24
-rwxr-xr-x409/CH13/EX13.4/Example13_4.sce20
-rwxr-xr-x409/CH13/EX13.5/Example13_5.sce23
-rwxr-xr-x409/CH13/EX13.6/Example13_6.sce21
-rwxr-xr-x409/CH13/EX13.7/Example13_7.sce68
-rwxr-xr-x409/CH13/EX13.8/Example13_8.sce34
8 files changed, 214 insertions, 0 deletions
diff --git a/409/CH13/EX13.1/Example13_1.sce b/409/CH13/EX13.1/Example13_1.sce
new file mode 100755
index 000000000..4db43d9df
--- /dev/null
+++ b/409/CH13/EX13.1/Example13_1.sce
@@ -0,0 +1,12 @@
+clear;
+clc;
+// Example 13.1
+printf('Example 13.1\n\n');
+//Page No. 404
+// Solution
+
+m_CO2 = 40 ;// Mass of CO2-[kg]
+mol_wt_CO2 = 44 ;// Molecular mass of 1kmol CO2 -[kg]
+mol_V = 22.42 ;// Molar of ideal gas at standard condition-[cubic metre/kg mol]
+V_CO2 = (m_CO2 * mol_V)/(mol_wt_CO2);// volume of CO2-[cubic metre]
+ printf('Volume occupied by 40 kg CO2 at standard condition is %.1f cubic metre.',V_CO2); \ No newline at end of file
diff --git a/409/CH13/EX13.2/Example13_2.sce b/409/CH13/EX13.2/Example13_2.sce
new file mode 100755
index 000000000..a73df1f29
--- /dev/null
+++ b/409/CH13/EX13.2/Example13_2.sce
@@ -0,0 +1,12 @@
+clear ;
+clc;
+// Example 13.2
+printf('Example 13.2\n\n');
+//Page No. 405
+// Solution
+
+p =1 ;// Pressure -[atm]
+V = 22415 ;// Molar valume -[cubic centimetre/g mol]
+T = 273.15 ;// Temperature-[K]
+R = (p*V/T);// Universal gas constant-[(cubic centimetre.atm)/(K.g mol)]
+ printf('Universal gas constant is %.2f (cubic centimetre*atm)/(K*g mol). ',R); \ No newline at end of file
diff --git a/409/CH13/EX13.3/Example13_3.sce b/409/CH13/EX13.3/Example13_3.sce
new file mode 100755
index 000000000..8c444afe7
--- /dev/null
+++ b/409/CH13/EX13.3/Example13_3.sce
@@ -0,0 +1,24 @@
+clear ;
+clc;
+ // Example 13.3
+ printf('Example 13.3\n\n');
+ // Page No.406
+ // Solution
+
+m_CO2 = 88 ;// Mass of CO2-[lb]
+mol_wt_CO2 = 44 ;// Molecular mass of 1 lb mol CO2 -[lb]
+mol_V = 359 ; // Molar volume-[cubic feet]
+
+ // State 1-standard condition
+P1 = 33.91 ; // Pressure -[ft of water]
+T1 = 273 ;// Temperature-[K]
+
+ // State 2
+P2 = 32.2 ;// Pressure -[ft of water]
+Tc = 15 ;// Temperature-[degree C]
+T2 = Tc+273 ;// Temperature-[K]
+
+ // Use eqn. 13.2 to get final volume
+V1 = (m_CO2 * mol_V) / (mol_wt_CO2);
+V2 = (V1 * T2 * P1) / (T1 * P2);
+ printf('The volume occupied 88 lb of CO2 at given condition is %.0f cubic feet.',V2); \ No newline at end of file
diff --git a/409/CH13/EX13.4/Example13_4.sce b/409/CH13/EX13.4/Example13_4.sce
new file mode 100755
index 000000000..209c3ac9c
--- /dev/null
+++ b/409/CH13/EX13.4/Example13_4.sce
@@ -0,0 +1,20 @@
+clear ;
+clc;
+// Example 13.4
+printf('Example 13.4\n\n');
+//Page No. 408
+// Solution
+
+mol_wt_N2 = 28 ;// Molecular mass of 1 kg mol N2 -[kg]
+mol_V = 22.42 ;// Molar of ideal gas at standard condition-[cubic metre/kg mol]
+Tc = 27 ;// Temperature-[degree C]
+T = Tc + 273 ;//Temperature-[K]
+P = 100 ;//Pressure-[kPa]
+
+//Standard condition
+Ps = 101.3 ;// Pressure -[kPa]
+Ts = 273 ;//Temperature-[K]
+
+V = (T * Ps * mol_V)/(Ts * P) ;// Volume occupied by N2-[cubic metre]
+D_N2 = mol_wt_N2/V ;// Density of N2 at given condition-[kg/cubic metre]
+ printf(' Density of N2 at given condition is %.3f kg/cubic metre.',D_N2); \ No newline at end of file
diff --git a/409/CH13/EX13.5/Example13_5.sce b/409/CH13/EX13.5/Example13_5.sce
new file mode 100755
index 000000000..6f5faa443
--- /dev/null
+++ b/409/CH13/EX13.5/Example13_5.sce
@@ -0,0 +1,23 @@
+clear ;
+clc;
+// Example 13.5
+printf('Example 13.5\n\n');
+//Page No. 409
+// Solution
+
+mol_wt_N2 = 28 ;// Molecular mass of 1 lb mol N2 -[lb]
+mol_wt_air = 29 ;// Molecular mass of 1 lb mol air -[lb]
+mol_V = 359 ;// Molar volume of ideal gas-[cubic feet]
+//Given condition
+Tf = 80 ;// Temperature-[degree F]
+T = Tf + 460 ;//Temperature-[degree Rankine]
+P = 745 ;//Pressure-[mm of Hg]
+
+//Standard condition
+Ps = 760 ;// Pressure -[mm of Hg]
+Ts = 492 ;//Temperature-[degree Rankine]
+
+D_air = (Ts * P * mol_wt_air)/(T * Ps * mol_V) ;// Density of air at given condition-[lb/cubic feet]
+D_N2 = (Ts * P * mol_wt_N2)/(T * Ps * mol_V) ;// Density of N2 at given condition-[lb/cubic feet]
+sg_N2 = D_N2/D_air ;// Specific gravity of N2 compared to air at given condition
+ printf(' Specific gravity of N2 compared to air at given condition is %.3f .',sg_N2); \ No newline at end of file
diff --git a/409/CH13/EX13.6/Example13_6.sce b/409/CH13/EX13.6/Example13_6.sce
new file mode 100755
index 000000000..baa2d488f
--- /dev/null
+++ b/409/CH13/EX13.6/Example13_6.sce
@@ -0,0 +1,21 @@
+clear ;
+clc;
+// Example 13.6
+printf('Example 13.6\n\n');
+//Page No. 414
+// Solution
+
+F_gas = 1 ;// Flue gas [kg mol]
+mf_CO2 = 14/100 ;// [mol fraction]
+mf_O2 = 6/100 ;// [mol fraction]
+mf_N2 = 80/100 ;// [mol fraction]
+P = 765 ;//Pressure-[mm of Hg]
+T = 400 ;// Temperature-[degree F]
+p_CO2 = P * mf_CO2 ;// Partial pressure of CO2-[mm of Hg]
+p_O2 = P * mf_O2 ;// Partial pressure of O2-[mm of Hg]
+p_N2 = P * mf_N2 ;// Partial pressure of N2-[mm of Hg]
+
+ printf(' Component pi(Partial pressure-[mm of Hg]) \n');
+ printf(' CO2 %.1f mm of Hg\n ',p_CO2);
+ printf(' O2 %.1f mm of Hg\n ',p_O2);
+ printf(' N2 %.1f mm of Hg\n ',p_N2); \ No newline at end of file
diff --git a/409/CH13/EX13.7/Example13_7.sce b/409/CH13/EX13.7/Example13_7.sce
new file mode 100755
index 000000000..27b9c3e48
--- /dev/null
+++ b/409/CH13/EX13.7/Example13_7.sce
@@ -0,0 +1,68 @@
+clear ;
+clc;
+// Example 13.7
+printf('Example 13.7\n\n');
+//Page no. 416
+// Solution fig E13.7
+
+G = 100 ;// Basis: Pyrolysis Gas-[lb mol]
+ub_CO = 10/100 ;// fraction of CO left unburnt
+ex_air = 40/100 ;;// fraction of excess air
+m_vol = 359 ;// molar volume of gas at std. cond.-[cubic feet]
+Ts = 492 ;// Standard temperature -[degree Rankine]
+Ps = 29.92 ;//Standard pressure -[in. Hg]
+
+// Analysis of entering gas of entering gas
+Tf1 = 90 ;// Temperature of gas-[degree F]
+T_gas = Tf1 + 460 ;//Temperature of gas-[degree Rankine]
+P_gas = 35 ;//Pressure-[in. Hg]
+CO2 = 6.4/100 ;// mol fraction of CO2
+O2 = 0.1/100 ;// mol fraction of O2
+CO = 39/100 ;// mol fraction of CO
+H2 = 51.8/100 ;// mol fraction of H2
+CH4 = 0.6/100 ;// mol fraction of CH4
+N2 = 2.1/100 ;// mol fraction of N2
+
+// Analysis of entering air
+Tf2 = 70 ;// Temperature of air -[degree F]
+T_air = Tf2 + 460 ;//Temperature of air-[degree Rankine]
+P_air = 29.4 ;//Pressure of air [in. Hg]
+f_N2 = 79/100 ;// mol fraction of N2
+f_O2 = 21/100 ;// mol fraction of O2
+
+// Get O2 required for combustion of CO,H2 & CH4 according to the following equation
+// CO + 1/2O2-->CO2
+//H2 + 1/2O2-->H20
+//CH4 + 2O2--> CO2 + 2H2O
+O2r_O2 = O2 * G ;// O2 required by O2-[lb mol]
+O2r_CO = CO * G/2 ;// O2 required by CO-[lb mol]
+O2r_H2 = H2 * G/2 ;// O2 required by H2-[lb mol]
+O2r_CH4 = G * CH4 * 2 ;// O2 required by CH4-[lb mol]
+O2r_total = O2r_O2 + O2r_CO + O2r_H2 + O2r_CH4 ;// Total O2 required-[lb mol]
+ex_O2 = ex_air * O2r_total ;// Excess O2-[lb mol]
+total_O2 = ex_O2 + O2r_total ;// Total amt of O2 in air-[lb mol]
+total_N2 = total_O2 * (f_N2/f_O2);// Total amt of in air-[lb mol]
+air = total_O2 + total_N2 ;// Total air entering -[lb mol]
+
+// Product analysis
+P_CO = ub_CO * CO * G ;//Unburnt CO in P-[lb mol]
+//Element balance of 2N
+P_N2 = N2 * G + total_N2 ;// N2 in P-[lb mol]
+//Element balance of C
+P_CO2 = (CO2 + CO + CH4) * G - 1 * P_CO;//CO2 in P-[lb mol]
+// Element balance of 2H
+P_H2O = (H2 + 2 * CH4) * G ;// H2 in P-[lb mol]
+// Element balance of 2O
+P_O2 = (CO2 + O2 + 0.5 * CO) * G + total_O2 -P_CO2-0.5 * (P_H2O + P_CO);// O2 in P-[lb mol]
+P = P_CO + P_N2 + P_CO2 + P_H2O + P_O2 ;// Product-[lb mol]
+Tf3 = 400 ;// Temperature of product-[degree F]
+T_prod = Tf3 + 460 ;//Temperature of product-[degree Rankine]
+P_prod = 35 ;// Pressure of product -[in.Hg]
+V_gas = (G * m_vol * T_gas * Ps)/(Ts * P_gas);
+V_air = (air * m_vol * T_air * Ps)/(Ts * P_air);
+V_prod = (P * m_vol * T_prod * Ps)/(Ts * P_prod);
+air_ft3 = V_air/V_gas ;//Air supplied per ft^3 of gas entered-[cubic feet]
+P_ft3 = V_prod/V_gas ;//Product gas produced per ft^3 of gas entered-[cubic feet]
+
+printf(' Air supplied per ft^3 of gas entered %.2f cubic feet.\n ',air_ft3);
+printf(' Product gas produced per ft^3 of gas entered %.2f cubic feet.\n',P_ft3);
diff --git a/409/CH13/EX13.8/Example13_8.sce b/409/CH13/EX13.8/Example13_8.sce
new file mode 100755
index 000000000..ef84c3a4c
--- /dev/null
+++ b/409/CH13/EX13.8/Example13_8.sce
@@ -0,0 +1,34 @@
+clear ;
+clc;
+//Page No. 419
+// Example 13.8
+printf('Example 13.8\n\n');
+// Solution fig E13.8
+
+T1c = 15 ;// Temperature of F & P -[degree C]
+T1 = 273 + T1c ;// Temperature of F & P -[K]
+P1 = 105 ;// Pressure of F & P -[kPa]
+// F analysis
+F_CO2 = 1.2/100 ;// Volume fraction
+F_odr = 98.8/100 ;// Volume fraction
+
+// P analysis
+P_CO2 = 3.4/100 ;// Volume fraction
+P_odr = 96.6/100 ;// Volume fraction
+
+Tc_CO2 = 7 ;//Temperature CO2 -[degree C]
+T_CO2 = 273 + Tc_CO2 ;// Temperature CO2 -[K]
+P_CO2 = 131 ;// Pressure of CO2 -[kPa]
+CO2 = 0.0917 ;// Volume flow rate of CO2-[cubic metre/min]
+// Convert given volume flow rate of CO2 at temperature of F & P
+nw_CO2 = (CO2 * T1 * P_CO2)/(T_CO2 * P1) ;// volume flow rate of CO2 at temperature of F & P-[cubic metre]
+// Solve P & F by following eqns. obtained by component balance of CO2 and total balance
+// F(F_odr) = P(P_odr) - others balance
+// F + nw_CO2 = P - Total balance
+// Solving by matrix method
+a = [F_odr -P_odr;1 -1];// Matrix formed by coefficients of unknown
+b = [0;-nw_CO2] ;// Matrix formed by constants
+x = a\b ;// matrix of solution, x(1) = F;x(2) = P
+F = x(1) ;//Volume flow rate of entering gas-[cubic metre/min]
+P = x(2) ;//Volume flow rate of product [cubic metre/min]
+printf('Volume flow rate of entering gas is %.2f cubic metre/min',F);