diff options
Diffstat (limited to '389/CH3/EX3.4/Example3_4.sce')
-rwxr-xr-x | 389/CH3/EX3.4/Example3_4.sce | 41 |
1 files changed, 41 insertions, 0 deletions
diff --git a/389/CH3/EX3.4/Example3_4.sce b/389/CH3/EX3.4/Example3_4.sce new file mode 100755 index 000000000..ec1980073 --- /dev/null +++ b/389/CH3/EX3.4/Example3_4.sce @@ -0,0 +1,41 @@ +clear;
+clc;
+
+// Illustration 3.4
+// Page: 69
+
+printf('Illustration 3.4 - Page: 69\n\n');
+
+// solution
+
+//***Data****//
+// a = UF6 b = air
+// The average heat transfer coefficient: Nu_avg = 0.43+0.532(Re^0.5)(Pr^0.31)
+// The analogus expression for mass transfer coefficient: Sh_avg = 0.43+0.532(Re^0.5)(Sc^0.31)
+d = 0.006;// [m]
+velocity = 3;// [m/s]
+surf_temp = 43;// [C]
+bulk_temp = 60;// [C]
+avg_temp = (surf_temp+bulk_temp)/2; //[C]
+density = 4.10;// [kg/cubic m]
+viscosity = 2.7*10^(-5);// [kg/m.s]
+Dab = 9.04*10^(-6);// [square m/s]
+press = 53.32;// [kN/square m]
+tot_press = 101.33;// [kN/square m]
+//******//
+
+avg_press = press/2; // [kN/square m]
+Xa = avg_press/tot_press;
+Xb = 1-Xa;
+Re = d*velocity*density/viscosity;
+Sc = viscosity/(density*Dab);
+Sh_avg = 0.43+(0.532*(2733^0.5)*(0.728^0.5));
+c = 273.2/(22.41*(273.2+avg_temp));// [kmol/cubic m]
+F_avg = Sh_avg*c*Dab/d;//[kmol/cubic m]
+Nb = 0;
+Ca1_by_C = press/tot_press;
+Ca2_by_C = 0;
+Flux_a = 1;
+// Using Eqn. 3.1
+Na = Flux_a*F_avg*log((Flux_a-Ca2_by_C)/(Flux_a-Ca1_by_C));//[kmol UF6/square m.s]
+printf('Rate of sublimation is %e kmol UF6/square m.s',Na);
\ No newline at end of file |