summaryrefslogtreecommitdiff
path: root/389/CH12/EX12.2/Example12_2.sce
diff options
context:
space:
mode:
Diffstat (limited to '389/CH12/EX12.2/Example12_2.sce')
-rwxr-xr-x389/CH12/EX12.2/Example12_2.sce75
1 files changed, 75 insertions, 0 deletions
diff --git a/389/CH12/EX12.2/Example12_2.sce b/389/CH12/EX12.2/Example12_2.sce
new file mode 100755
index 000000000..f5abe6f86
--- /dev/null
+++ b/389/CH12/EX12.2/Example12_2.sce
@@ -0,0 +1,75 @@
+clear;
+clc;
+
+// Illustration 12.2
+// Page: 665
+
+printf('Illustration 12.2 - Page: 665\n\n');
+
+// Solution
+
+// ***Data***//
+Y1 = 0.05;// [kg water/kg dry air]
+Yair = 0.01;// [kg water/kg dry air]
+TempG1 = 95;// [OC]
+width = 1;// [m]
+apart = 100/1000;// [m]
+deep = 38/1000;// [m]
+Rate_evaporation=7.5*10^(-3);// [kg/s]
+//*****************//
+
+// From Table 7.1: (Pg 234)
+vH = (0.00283+(0.00456*Y1))*(TempG1+273);// [cubic m/kg dry air]
+freeArea = width*(apart-deep)*11;// [square m]
+// Rate of air flow at 1:
+Rate_air1 = 3*freeArea/vH;// [square m]
+Y2 = Y1+(Rate_evaporation/Rate_air1);// [kg water/kg dry air]
+// Assuming adiabatic drying:
+// From adiabatic saturation curve, Fig 7.5: (Pg 232)
+TempG2 = 86;// [OC]
+// Overall Water Balance:
+G = Rate_evaporation/(Y1-Yair);// [kg dry air/s]
+// Rate of air flow at 3:
+Rate_air3 = Rate_air1+G;// [kg dry air/s]
+// Rate of air flow at 4:
+Rate_air4 = Rate_air3;// [kg dry air/s]
+// Volumetric Rate through fan:
+Rate_fan = Rate_air3/vH;// [cubic m/s]
+printf("Percentage of air recycled is: %f %%\n",(Rate_air1/Rate_air3)*100);
+printf("\n");
+
+// From Fig. 7.5 (page 232):
+// Saturated enthalpy at adiabatic saturation temp.
+Enthalpy1 = 233;// [kJ/kg dry air]
+Enthalpy2 = 233;// [kJ/kg dry air]
+// Enthalpy of fresh air:
+Enthalpy_air = 50;// [kJ/kg dry air]
+// Assuming complete mixing, by Enthalpy mixing:
+Enthalpy3 = ((Enthalpy1*Rate_air1)+(Enthalpy_air*G))/Rate_air3;// [kJ/kg dry air]
+Enthalpy4 = Enthalpy3;// [kJ/kg dry air]
+// From table 7.1: (Pg 234)
+Temp_dry = ((Enthalpy3*1000)-(2502300*Y1))/(1005+(1884*Y1));
+Power = (Enthalpy2-Enthalpy3)*Rate_air3;// [kW]
+// From Fig. 7.5, (Pg 232)
+DewPoint1 = 40.4;// [OC]
+DewPoint2 = 41.8;// [OC]
+DewPoint3 = 40.4;// [OC]
+DewPoint4 = 40.4;// [OC]
+printf("At Point 1\n")
+printf("Enthalpy of air: %f kJ/kg dry air\n",Enthalpy1);
+printf("Dew Point of air: %f OC\n",DewPoint1);
+printf("\n");
+printf("At Point 2\n")
+printf("Enthalpy of air: %f kJ/kg dry air\n",Enthalpy2);
+printf("Dew Point of air: %f OC\n",DewPoint2);
+printf("\n");
+printf("At Point 3\n")
+printf("Enthalpy of air: %f kJ/kg dry air\n",Enthalpy3);
+printf("Dew Point of air: %f OC\n",DewPoint3);
+printf("\n");
+printf("At Point 4\n")
+printf("Enthalpy of air: %f kJ/kg dry air\n",Enthalpy4);
+printf("Dew Point of air: %f OC\n",DewPoint4);
+printf("\n");
+printf("Dry bulb temparature of air: %f OC\n",Temp_dry);
+printf("Power delivered by heater: %f kW\n",Power); \ No newline at end of file